PREDICTIVE CONTROL OF SWITCHED NONLINEAR SYSTEMS

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides

Department of Chemical Engineering University of California, Los Angeles

7th Southern California Nonlinear Control Workshop October 31, 2003

INTRODUCTION

• Switched systems:

- ♦ Discrete transitions in continuous dynamics.
- ♦ Frequently arise in operation (demand changes, phase changes, etc.).
- \diamond Nonlinear continuous dynamics (nonlinear expressions of reaction rates).

• Input constraints:

- $\diamond\,$ Finite capacity of control actuators.
- $\diamond\,$ Influence stabilizability of an initial condition.
- Desired characteristics of an effective control policy:
 - $\diamond\,$ Account for the switched dynamics.
 - $\diamond\,$ Respect input constraints.
 - $\diamond\,$ Explicit characterization of set of admissible initial conditions.

BACKGROUND

- Combined discrete-continuous processes:
 - \diamond Modeling (e.g., Yamalidou et al, C&CE, 1990).
 - ♦ Simulation (e.g., Barton and Pantelides, AIChE J., 1994).
 - ♦ MINLP Optimization (e.g., Grossman et al., CPC-6, 2001).
- Stability of switched and hybrid systems:
 - ♦ Multiple Lyapunov functions (e.g., Branicky, IEEE TAC, 1998).
 - ♦ Dwell-time approach (e.g., Hespanha and Morse, CDC, 1999).
- Control of switched and hybrid linear systems:
 - ♦ Mixed Logical Dynamical systems (Morari and co-workers)
 - \triangleright Model predictive control.
 - \triangleright Moving horizon estimation and fault detection.
 - ▷ Optimization-based verification.
 - ♦ Optimal control of switched linear systems (e.g., Xu and Anstaklis, IJRNC, 2002).

SWITCHED NONLINEAR SYSTEMS WITH INPUT **CONSTRAINTS**

• State–space description:

$$\dot{x}(t) = f_{\sigma(t)}(x(t)) + g_{\sigma(t)}(x(t))u_{\sigma(t)}$$
$$u(t) \in \mathcal{U}, \ \sigma(t) \in \mathcal{I} : \{1, \dots, N < \infty\}$$

- $\diamond x(t) \in \mathbb{R}^n$: state vector. $\diamond u(t) \in \mathcal{U} \subset \mathbb{R}^m$: control input.
- $\diamond \mathcal{U} \subset \mathbb{R}^m$: compact & convex. $\diamond u = 0 \in \text{interior of } \mathcal{U}.$

 \diamond (0, 0): an equilibrium point for all σ .

 $\diamond \sigma : [0,\infty) \to \mathcal{I}$: the switching signal.

- $\diamond f_{\sigma}, g_{\sigma}$: sufficiently smooth functions for all σ .
- $\diamond \sigma(t)$: piecewise continuous from the right.

SWITCHED NONLINEAR SYSTEMS

- σ is a function of time, or state, or both.
- Autonomous switching:
 - $\diamond~\sigma$ depends **only** on the states.
- Controlled switching:
 - $\diamond~\sigma$ can be chosen by a supervisor.

CONSTRAINED CONTROL OF SWITCHED NONLINEAR SYSTEMS

(El-Farra and Christofides, AIChE J., 2003)

• Controller design requirements:

 $\diamond\,$ Available model for each mode of the nonlinear plant.

$$\dot{x} = f_{\sigma}(x) + g_{\sigma}(x)u_{\sigma}$$

 $\diamond~$ Input constraints.

$$|u_{\sigma}| \leq u_{max}$$

 $\diamond~$ Multiple Lyapunov functions.

$$V_{\sigma}, \quad \sigma = 1, \cdots, N$$

• Feedback controller design:

 $\diamond\,$ Bounded Lyapunov-based nonlinear control.

• Switching laws:

- $\diamond\,$ Track evolution of states w.r.t. stability regions of the individual modes.
- ♦ Multiple Lyapunov Function stability criteria.

AN EXAMPLE SAFE SWITCHING FOR 2-MODE SYSTEM

OPTIMIZATION-BASED CONTROL OF SWITCHED SYSTEMS

• Control problem formulation

 \diamond Compute u(t), $\sigma(t)$, that minimizes the following objective function:

$$P(x,t) : \min\{J(x,t,u(\cdot))| \ u(\cdot) \in U_{\Delta}\}$$
$$x(T) \in \Pi$$
$$\dot{x}(t) = f_{\sigma(t)}(x(t)) + g_{\sigma(t)}(x(t))u_{\sigma(t)}$$
$$u(t) \in \mathcal{U}, \ \sigma(t) \in \mathcal{I}$$

 \diamond Performance index:

$$J(x,t,u(\cdot),\sigma) = \int_t^{t+T} \left[l(x(s)) + r(u(s)) + m(\delta(\sigma))\right] ds$$

- $\triangleright \ l(\cdot), \ r(\cdot), \ m(\cdot) : \text{ positive def-}$ inite.
- $\triangleright m(\cdot)$: penalty on switching. $\triangleright T$: horizon length.
- $\triangleright l(\cdot), r(\cdot)$: penalty on states, control.

PROPERTIES AND IMPLEMENTATION ISSUES

- The optimization problem is a Mixed Integer optimization problem and yields:
 - \diamond Optimal control, u(t).
 - $\diamond\,$ Optimal switching sequence, $\sigma(t).$
- "Optimal" control accounting for switched dynamics:
 - $\diamond\,$ Feasibility/stability depends on appropriate choice of horizon length.
- For linear systems/quadratic costs: Mixed Integer Quadratic Program (MIQP).
 - ♦ Computational techniques available.
 - $\diamond\,$ Allows for online/receding horizon implementation.
- Nonlinear systems: Mixed Integer Nonlinear Program (MINLP).
 - $\diamond\,$ Computationally intractable.
 - $\diamond\,$ Ill-suited for the purpose of online implementation.

DYNAMIC SCHEDULING IN CHEMICAL PROCESSES: AN EXAMPLE

- $\diamond\,$ Storage tanks 1 & 2 empty every 1 hour.
- \diamond Schedule involves switching between F_1 and F_2 every hour.

PRESENT WORK

• Scope:

 $\diamond\,$ Switched nonlinear systems with input constraints.

• Objectives:

- \diamond Implement a prescribed switching sequence.
- ♦ Asymptotic stabilization of the switched system.
- Approach:
 - $\diamond\,$ An MLF-based predictive control framework that brings together:
 - ▷ Lyapunov-based control (stability region).
 - ▷ Model Predictive Controller (enforce transition constraints).

Switching between predictive controllers & Lyapunov-based controllers

LYAPUNOV-BASED CONTROL

• Explicit nonlinear control law:

$$u_{\sigma} = -k(x, u_{max})(L_{g_{\sigma}}V)^{T}$$

- ♦ Example: bounded controller (Lin & Sontag, 1991)
 - ▷ Controller design accounts for constraints.
- Explicit characterization of stability region:

$$\Omega_{\sigma}(u_{max}) = \{ x \in \mathbb{R}^n : V_{\sigma}(x) \le c_{\sigma}^{max} \& \dot{V}_{\sigma}(x) < 0 \}$$

♦ Larger estimates using a combination of several Lyapunov functions

MODEL PREDICTIVE CONTROL

- Control problem formulation
 - ♦ Finite-horizon optimal control:

$$P(x,t) \quad : \quad \min\{J(x,t,u(\cdot)) \mid u(\cdot) \in U_{\Delta}, V_{\sigma}(x(t+\Delta)) < V_{\sigma}(x(t))\}$$

♦ Performance index:

$$J(x,t,u(\cdot)) = F(x(t+T)) + \int_{t}^{t+T} \left[\|x^{u}(s;x,t)\|_{Q}^{2} + \|u(s)\|_{R}^{2} \right] ds$$

- $\triangleright \| \cdot \|_Q$: weighted norm.
- \triangleright T : horizon length.
 - $\diamond \text{ Same } V_{\sigma} \text{ as that for bounded} \\ \text{ controller design.}$
 - ♦ Bounded controller may provide "good" initial guess.

▷ Q, R > 0: penalty weights. ▷ $F(\cdot)$: terminal penalty.

HYBRID PREDICTIVE CONTROL

(El-Farra et. al., Automatica, 2004; IJRNC, 2004; AIChE J., 2004)

• Switching logic:

$$u_{\sigma}(x(t)) = \left\{ \begin{array}{ll} M_{\sigma}(x(t)), & 0 \le t < T^* \\ b_{\sigma}(x(t)), & t \ge T^* \end{array} \right\}$$

$$T^* = \inf\{T^* \ge 0 : L_{f_{\sigma}} V_{\sigma}(x) + L_{g_{\sigma}} V_{\sigma}(x) M_{\sigma}(x(T^*)) \ge 0\}$$

- $\diamond ext{ Initially implement MPC,} \ x(0) \in \Omega_{\sigma}(u_{max})$
- \diamond Monitor temporal evolution of $V_{\sigma}(x^{M}(t))$
- \diamond Switch to bounded controller only if $V_{\sigma}(x^{M}(t))$ starts to increase

PREDICTIVE CONTROL OF SWITCHED NONLINEAR SYSTEMS

• Prescribed switching sequence: $\sigma(t) = \begin{cases} \sigma_0, & t_0 \le t < t_1 \\ \sigma_1, & t_1 \le t < t_2 \\ \vdots & \vdots \end{cases}$

• Objectives:

- $\diamond\,$ Satisfy switching schedule.
- $\diamond\,$ Achieve asymptotic stabilization of the origin.

• Approach

- Family of hybrid predictive controllers with well characterized stability regions.
- $\diamond\,$ To ensure safe transitions, incorporate as constraints in MPC:
 - ▷ Stability region constraint.
 - $\triangleright\,$ MLF stability criteria.

PREDICTIVE CONTROL WITH MLF & STABILITY REGION CONSTRAINTS

• Specifications

- $\diamond \ \sigma(0) = 1$: System in mode 1
- $\diamond V_2^{old}: \text{ Value of } V_2 \text{ at last}$ switch to mode 2.

◊ σ(t_{switch}) = 2: Switch to mode 2.
◊ Ω₂: Stability region of closed-loop system in mode 2.

• Optimization problem

 \diamond Minimize:

$$J(x,t,u(\cdot)) = F(x(t+T)) + \int_{t}^{t+T} \left[\|x^{u}(s;x,t)\|_{Q}^{2} + \|u(s)\|_{R}^{2} \right] ds$$

 \diamond Subject to:

$$V_1(x(t + \Delta)) < V_1(x(t))$$

$$V_2(x(t_{switch})) < V_2^{old}$$

$$x(t_{switch}) \in \Omega_2$$

MLF-BASED PREDICTIVE CONTROL STRATEGY

DESIGN AND IMPLEMENTATION

- Design, for each mode:
 - ♦ A hybrid predictive controller comprising of:
 - \triangleright A bounded controller, and characterize its stability region $\Omega_{\sigma}(u_{max})$.
 - \triangleright A model predictive controller.
 - $\diamond\,$ MPC with MLF and stability region constraints.
- Implementation:

ILLUSTRATIVE EXAMPLE

• State–space description:

$$\dot{x} = f_{\sigma}(x) + g_{\sigma}(x)u_{\sigma}$$

$$f_{1}(x) = \begin{bmatrix} 2x_{1}^{2} + x_{1} + 2x_{2}^{3} + 5x_{2} \\ -2x_{1}^{2} + 0.3x_{1} + x_{2}^{2} + 8x_{2} \end{bmatrix} , g_{1}(x) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$f_{2}(x) = \begin{bmatrix} x_{1}^{2} + 7x_{1} + 2x_{2}^{3} + 2x_{2} \\ x_{1}^{2} + x_{1} + x_{2}^{2} + 0.9x_{2} \end{bmatrix} , g_{2}(x) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- $\diamond\,$ Origin unstable equilibrium of both modes.
- ♦ Objectives:
 - \triangleright Switch to mode 2 at t = 0.2.
 - ▷ Asymptotic stabilization of the origin.
- ♦ Manipulated input: $u \in [-1, 1]$

CONTROLLER DESIGN

• Bounded controller:

 \diamond Bounded controller designed using a quadratic lyapunov function.

$$\diamond \text{ Use } V_k = x^T P_k x, \ k = 1, \ 2.$$

• Lyapunov-based Model predictive controller:

$$J = \int_{t}^{t+T} \left[\|x(\tau)\|_{Q}^{2} + \|u(\tau)\|_{R}^{2} \right] d\tau$$

$$\diamond \ Q = qI > 0, \ q = 1, \ R = rI > 0, \ r = 1$$

♦ Lyapunov constraint: $V_1(x(t + \Delta)) < V_1(x(t))$

• Transition constraint:

 $\diamond \ x(t=0.2) \in \Omega_2$

CLOSED-LOOP SIMULATION RESULTS

 $x(0) = [-0.38 \ 0.04]^T \in \Omega_1(u_{max}); \ q = 1.0; \ r = 1.0.$

♦ MPC with T = 0.2, no switch; MPC with T = 0.2, switch at t = 0.2; MLF-based MPC, followed by MPC, switch at t = 0.2

CONCLUSIONS

- Stabilization of switched nonlinear systems with input constraints.
 - ♦ Implement a prescribed switching sequence.
- An MLF-based predictive control framework that brings together:
 - ♦ Lyapunov-based control (stability region).
 - ♦ Design & implementation of Hybrid Predictive Control structure:
 - ▷ Guaranteed stability region.
 - ▷ Enforce MLF & stability region constraints.

ACKNOWLEDGEMENT

• Financial support from NSF, CTS-0129571, is gratefully acknowledged.