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INTRODUCTION

e Switched systems:

¢ Discrete transitions in continuous dynamics.
¢ Frequently arise in operation (demand changes, phase changes, etc.).

¢ Nonlinear continuous dynamics (nonlinear expressions of reaction rates).

e Input constraints:

¢ Finite capacity of control actuators.

¢ Influence stabilizability of an initial condition.
e Desired characteristics of an effective control policy:

¢ Account for the switched dynamics.
¢ Respect input constraints.

¢ Explicit characterization of set of admissible initial conditions.



BACKGROUND

e Combined discrete-continuous processes:
o Modeling (e.g., Yamalidou et al, C&CE, 1990).
o Simulation (e.g., Barton and Pantelides, AIChE J., 1994).
o MINLP - Optimization (e.g., Grossman et al., CPC-6, 2001).

e Stability of switched and hybrid systems:
o Multiple Lyapunov functions (e.g., Branicky, IEEE TAC,1998).
o Dwell-time approach (e.g., Hespanha and Morse, CDC,1999).

e Control of switched and hybrid linear systems:

o Mixed Logical Dynamical systems (Morari and co-workers)
> Model predictive control.
> Moving horizon estimation and fault detection.

> Optimization-based verification.

o Optimal control of switched linear systems (e.g., Xu and Anstaklis,
[JRNC, 2002).



SWITCHED NONLINEAR SYSTEMS WITH INPUT
CONSTRAINTS

e State—space description:

CL‘(t) — fa(t)(aj(t»+go(t)<x<t))ua(t)
u(t) € U,ot)eZ: {1,...,N < oo}

o x(t) € IR™ : state vector. o u(t) e d C IR™ : control input.

o U C IR™: compact & convex. o ¢ = (0 € interior of U.

o (0, 0): an equilibrium point © o : [0,00) — Z: the switching

for all o. signal.

o fo, go: sufficiently smooth < o(t): piecewise continuous from

functions for all o. the right.



SWITCHED NONLINEAR SYSTEMS
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e o is a function of time, or state, or both.

e Autonomous switching:

¢ o depends only on the states.

e Controlled switching:

¢ o can be chosen by a supervisor.



CONSTRAINED CONTROL OF SWITCHED NONLINEAR

SYSTEMS
(El-Farra and Christofides, AIChE J., 2003)

e Controller design requirements:

¢ Available model for each mode of the nonlinear plant.

= folr) +go(2)us

¢ Input constraints.

IA

[Uue | Umaz

¢ Multiple Lyapunov functions.

Voo o=1,--- N

e Feedback controller design:

¢ Bounded Lyapunov-based nonlinear control.

e Switching laws:

¢ Track evolution of states w.r.t. stability regions of the individual modes.

¢ Multiple Lyapunov Function stability criteria.



Stability region

for mode 2
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AN EXAMPLE
SAFE SWITCHING FOR 2-MODE SYSTEM
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OPTIMIZATION-BASED CONTROL OF SWITCHED SYSTEMS

e Control problem formulation
o Compute u(t), o(t), that minimizes the following objective function:

) min{J(z,t,u(-))| u(-) € UA}\
z(T) € 1I

)

)

= fow)(@(t)) + gorr) (@ (1) )us()

€ U, o(t)el /

¢ Performance index:

t+T
J(,tu(-),0) = /t ((s)) +r(u(s)) +m(0(a))] ds

> [(-), r(+), m(-) : positive def- > [(-), 7(-) : penalty on states,
inite. control.
> m(-) : penalty on switching. > T" : horizon length.



PROPERTIES AND IMPLEMENTATION ISSUES

The optimization problem is a Mixed Integer optimization problem and

yields:
o Optimal control, u(t).

o Optimal switching sequence, o(t).

“Optimal” control accounting for switched dynamics:

o Feasibility /stability depends on appropriate choice of horizon length.
For linear systems/quadratic costs: Mixed Integer Quadratic Program
(MIQP).

¢ Computational techniques available.

o Allows for online/receding horizon implementation.

Nonlinear systems: Mixed Integer Nonlinear Program (MINLP).
¢ Computationally intractable.

¢ Ill-suited for the purpose of online implementation.



DYNAMIC SCHEDULING IN CHEMICAL PROCESSES: AN

EXAMPLE
Tank 1 Tank 2
F)Cpy KD
F, Ca

¢ Storage tanks 1 & 2 empty every 1 hour.

¢ Schedule involves switching between F} and F5 every hour.



PRESENT WORK

e Scope:

¢ Switched nonlinear systems with input constraints.

e Objectives:

¢ Implement a prescribed switching sequence.

¢ Asymptotic stabilization of the switched system.

e Approach:

¢ An MLF-based predictive control framework that brings together:

> Lyapunov-based control (stability region).

> Model Predictive Controller (enforce transition constraints).

Switching between predictive controllers & Lyapunov-based controllers




LYAPUNOV-BASED CONTROL

e Explicit nonlinear control law:

Uy = —k(&, Umaz)(Lg, V)t

¢ Example: bounded controller (Lin & Sontag, 1991)

> Controller design accounts for constraints.

e Explicit characterization of stability region:

[Qa(umax) = {zeR":V,(z) < &V, (z) < 0}]

¢ Larger estimates using a combination of several Lyapunov functions



MODEL PREDICTIVE CONTROL

e Control problem formulation

¢ Finite-horizon optimal control:

[ P(z,t) : min{J(x,t,u(-))| u(:) € Ua,Vy(z(t+ A)) < Va(x(t))}j

¢ Performance index:

t4+T
Jeta() = FarT)+ [ [le"(sm 0l + luls) IR ds
t
> || - || : weighted norm. > (), R >0 : penalty weights.
> T" : horizon length. > F'() : terminal penalty.
Efuture
¢ Same V, as that for bounded [ Se e
% predicted state trajectory
controller design. %
o Bounded controller may pro- 1 e computed manipulated input
IR S trajectory
vide “good” initial guess. = -

prediction horizon



HYBRID PREDICTIVE CONTROL
(El-Farra et. al., Automatica, 2004; IJRNC, 2004; AIChE J., 2004)

e Switching logic:

Bounded controller’s
Stability region

Q(Unax)

¢ Initially  implement MPC,
z(0) € Qo (Umaz)

¢ Monitor temporal evolution of Switching

Vo (™ (t)) X(T")
¢ Switch to bounded controller
only if V, (z™ (t)) starts to in-
crease
V(X)=Cinax Active MPC

— & Active Bounded control



PREDICTIVE CONTROL OF SWITCHED NONLINEAR
SYSTEMS

4 )
ao, to <t <ty

e Prescribed switching sequence: o(t) = <{ o1, t1 <t <t

e Objectives:

¢ Satisty switching schedule.

¢ Achieve asymptotic stabilization of the origin.

e Approach

¢ Family of hybrid predictive controllers with well characterized
stability regions.
¢ To ensure safe transitions, incorporate as constraints in MPC:

> Stability region constraint.
> MLEF stability criteria.




PREDICTIVE CONTROL WITH MLF & STABILITY REGION
CONSTRAINTS

e Specifications
o o(0) = 1: System in mode 1 ~ © 0 (tswiten) = 2: Switch to mode 2.

o VP Value of Vi at last © {220 Stability region of closed-

switch to mode 2. loop system in mode 2.

e Optimization problem

¢ Minimize:

t+T
Jtul) = Fla+T)+ [ e s, O + () 13] ds
& Subject to:
Vi(x(t+A)) < Vi(z(t))
Vo(2(tswiten)) < VPl
T(tswiten) € Ko
> T > tewiten, : Hori- > tswiteh - Remains fixed during reced-

zon length. ing horizon implementation.



MLF-BASED PREDICTIVE CONTROL STRATEGY

/\

Transitions

Switching
| | Schedule | |

Bounded Bounded
Controller g | Cortiallr
‘ Transition Stability Transition Stability ‘

Constraints Constraints

Constraints Constraints

Stability
Region 1

Stability
Region 2




DESIGN AND IMPLEMENTATION

e Design, for each mode:

¢ A hybrid predictive controller comprising of:
> A bounded controller, and characterize its stability region €2, (.. ).
> A model predictive controller.

o MPC with MLF and stability region constraints.

e Implementation:

Hybrid Predictive

No
3

control

Transition and Stability
Constraints feasible?

[Abort Switching ]

.|

Transition

Constraints

Yes
—[Implement }R

Feasible?



ILLUSTRATIVE EXAMPLE

e State—space description:

fi(z) =

fo(x) =

¢ Origin unstable equilibrium of both modes.

¢ Objectives:

r = fa(x)+ga(x)ua

209 + 11 + 223 + 5o

—22% + 0.321 + 23 + 829

x9 + Twy + 215 + 219

r9 + 1 + x5 + 0.929

> Switch to mode 2 at ¢t = 0.2.
> Asymptotic stabilization of the origin.

¢ Manipulated input: v € [—1, 1]

7gl(x)

792(33)




CONTROLLER DESIGN

e Bounded controller:

¢ Bounded controller designed using a quadratic lyapunov function.

o Use Vk — :I?TPkiE, k = 1, 2.

e Lyapunov-based Model predictive controller:

t+T
[J :/t [Ilw(T)éJrIU(T)II%]dT]

o Q=ql >0,g=1, R=rl>0,r=1

o Lyapunov constraint: Vi(z(t + A)) < Vi(z(t))

e Transition constraint:

& 33(t = 02) € (s



CLOSED-LOOP SIMULATION RESULTS
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¢ Input & state profiles ¢ Closed-loop trajectories

2(0) = [—0.38 0.04]7 € Q1 (umaz); ¢ =1.0; » = 1.0.

MPC with T' = 0.2, no switch; MPC with T' = 0.2, switch at ¢ = 0.2;
MLF-based MPC, followed by MPC, switch at ¢ = 0.2



CONCLUSIONS

e Stabilization of switched nonlinear systems with input constraints.
¢ Implement a prescribed switching sequence.
e An MLF-based predictive control framework that brings together:

o Lyapunov-based control (stability region).

¢ Design & implementation of Hybrid Predictive Control structure:

> Guaranteed stability region.

> Enforce MLF & stability region constraints.
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