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OUTLINE

(Ni, et al., IEEE TSM, 2004)

• Introduction.

¦ High-κ dielectrics.

¦ Plasma-enhanced chemical vapor deposition (PECVD).

¦ Process control of semiconductor device fabrication.

• Experimental setup and measurement systems.

¦ Experimental PECVD system.

¦ Optical emission spectroscopy (OES).

¦ X-ray photoelectron spectroscopy (XPS).

• Real-time carbon content control for PECVD ZrO2 growth.

¦ Carbon content estimation and real-time feedback control.

¦ Experimental results and thin film characterizations.



HIGH-κ DIELECTRICS

Cross-section drawing of a MOS transistor.

• Replace SiO2 by high-κ materials.

¦ Decrease of device dimensions.

¦ High leakage current of ultra thin SiO2 film.

¦ ZrO2 is a leading candidate to replace SiO2.



PLASMA-ENHANCED CVD
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Illustration of plasma-enhanced chemical vapor deposition.

• Deposition of dielectric thin films by PECVD.

¦ Higher growth rate.

¦ Outstanding step coverage.

¦ Lower deposition temperature compared to conventional CVD.



PROCESS CONTROL OF SEMICONDUCTOR DEVICE FAB

• Primary categories of process control in semiconductor device fabrication.

¦ Plant management, contamination control, materials handling, and unit
operations control (Lee 1990).

• Recipe-based open-loop unit operation.

¦ Based on off-line optimization.

¦ Inflexible and non-robust.

• Real-time feedback control.

¦ Robust and flexible.

¦ Feedback control of MOCVD growth of submicron compound
semiconductor films (Warnick and Dahleh 1998).

¦ Plasma enhanced chemical vapor deposition: Modeling and control of
deposition spatial uniformity (Armaou and Christofides 1999).



ECR PECVD REACTOR

Electron cyclotron resonance (ECR) PECVD reactor.

• Experimental ECR high density PECVD reactor.

¦ 6-inch stainless-steel chamber and 4-inch aluminum sample holder.

¦ Optical ports are installed for plasma diagnostics.



PECVD PROCESS FLOWCHART

Flowchart of the experimental process system.

• Zirconium tetra-tert-butoxide [Zr(OC4H9)4] (ZTB) as MO precursor.

• Bubbler heated to 65oC. • Ar: carrier gas. • O2: oxidant.



OPTICAL EMISSION SPECTROSCOPY

• Ocean Optics MC2000 OES system.

¦ 5 channels of 2048 pixels CCD arrays.

¦ Covering the wavelength range between 200 nm to 1000 nm.

¦ Optical emission spectra taken at 1 inch above the wafer.



X-RAY PHOTOELECTRON SPECTROSCOPY (XPS)

• X-ray photoelectron spectroscopy system.

¦ Al Kα x-ray radiation source.

¦ VG ESCALAB 5 electron spectrometer.

¦ Surface C 1s peak at 284.6 eV as reference.



REAL-TIME FEEDBACK CARBON CONTENT CONTROL

• Control problem formulation:

¦ Lower carbon content.

¦ Eliminate variations of carbon content of ZrO2 thin films.

¦ Convert the batch control problem to a set-point regulation problem.

• Estimation:

¦ Carbon content estimation using in-situ (real-time) OES measurements.

¦ Carbon content estimator calibration using ex-situ (off-line) XPS
measurements.

• Manipulated variable:

¦ O2 mass flow rate.



CARBON CONTENT ESTIMATION USING OES

• Carbon content is correlated with optical emission intensity ratio of C2 to
O (Cho et al., 2001).

• Linear regression formula:

Xs
C = Aγ



CARBON CONTENT ESTIMATION USING OES

• Real-time carbon content estimation model:

XC(t) = A

∫ t

T0

γ(s)ds

t− T0

• Real-time carbon content estimation model in discrete-time form:

– Explicit expression

XC(k) = A

k∑

i=k0

γ(i)

k − k0
k > k0

– Recursive expression

XC(k) =
A

k − k0
γ(k) + [N(k − 1)]

k − k0 − 1
k − k0

k > k0



REAL-TIME CARBON CONTENT CONTROLLER

• Proportional-integral control algorithm is employed:

U(t) = Kcê(t) + Ki

∫ t

t0

ê(µ)dµ + R̄f

ê(t) = e(t) |e(t)| > ε

= 0 |e(t)| ≤ ε

• Controller expression in discrete-time recursive form:

U(k) = U(k − 1) + Kc[ê(k)− ê(k − 1)] + KiTsê(k)

• Manipulated variable: O2 mass flow rate.

fO2(k) =
fAr(k)
U(k)



REAL-TIME CARBON CONTENT CONTROL SYSTEM
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Block diagram of the closed-loop system.



COMPUTER-BASED CONTROL SYSTEM

• Pentium III 700 MHz PC with 512MB RAM.

• National Instruments LabVIEW for Windows Version 6.1.

• National Instruments 16 bit DAQ boards: PCI-6034E and NI 6704.



OPEN-LOOP DYNAMICS

• Carbon content takes considerably long time to reach steady state.



PROCESS IDENTIFICATION

• The relationship between the steady-state of γ and Rf is almost cubic.

• The input/output dynamics can be approximated by a first-order system
with a small time constant.



CONTROLLER TUNING

• Process system is simulated using Simulink.

• Controller is pre-tuned by simulation using Ziegler-Nichols method.

• The controller parameters are further adjusted based on the experimental
conditions to achieve desired performance.



CLOSED-LOOP DYNAMICS

• Carbon content is controlled at desired value with little fluctuation.

• Carbon content and transition time is reduced significantly under feedback
control.



XPS ANALYSIS

• C − C peaks are mostly due to the ambient contamination.

• Carbon peak area decreases consistently with decreasing set-point.



CARBON CONCENTRATION AND O/Zr RATIO

• The actual carbon concentration in the deposited films matches very well
with the corresponding set-points.

• Fully stoichiometric grown ZrO2 films are obtained by feedback-controlled
depositions.



CONCLUSIONS
• Real-time feedback control of carbon content of ZrO2 thin films.

¦ Real-time carbon content estimator using optical emission intensity
ratio of C2 and O by OES.

¦ Proportional-integral feedback controller.

• Implementation of real-time carbon content controller and experiments.

¦ A computer-based carbon content control system is implemented on a
PECVD reactor.

¦ Experimental results suggest that low carbon content, small variation,
and robust operation can be achieved with feedback control.

¦ XPS thin film characterization verified feedback control performance.

• Combination of OES and XPS can be used to estimate other film species.
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