REAL-TIME CONTROL OF HIGH- κ DIELECTRIC THIN FILM COMPOSITION

Dong Ni, Yiming Lou, Panagiotis D. Christofides, Lin Sha, Sandy Lao, and Jane P. Chang

> Department of Chemical Engineering University of California, Los Angeles

AIChE Annual Meeting San Francisco Nov. 17, 2003

OUTLINE

(Ni, et al., IEEE TSM, 2004)

- Introduction.
 - $\diamond\,$ High- $\kappa\,$ dielectrics.
 - \diamond Plasma-enhanced chemical vapor deposition (PECVD).
 - $\diamond\,$ Process control of semiconductor device fabrication.
- Experimental setup and measurement systems.
 - $\diamond\,$ Experimental PECVD system.
 - \diamond Optical emission spectroscopy (OES).
 - $\diamond\,$ X-ray photoelectron spectroscopy (XPS).
- Real-time carbon content control for PECVD ZrO_2 growth.
 - $\diamond\,$ Carbon content estimation and real-time feedback control.
 - $\diamond\,$ Experimental results and thin film characterizations.

HIGH- κ **DIELECTRICS**

Cross-section drawing of a MOS transistor.

- Replace SiO_2 by high- κ materials.
 - $\diamond\,$ Decrease of device dimensions.
 - \diamond High leakage current of ultra thin SiO_2 film.
 - $\diamond ZrO_2$ is a leading candidate to replace SiO_2 .

PLASMA-ENHANCED CVD

Illustration of plasma-enhanced chemical vapor deposition.

- Deposition of dielectric thin films by PECVD.
 - $\diamond\,$ Higher growth rate.
 - \diamond Outstanding step coverage.
 - $\diamond\,$ Lower deposition temperature compared to conventional CVD.

PROCESS CONTROL OF SEMICONDUCTOR DEVICE FAB

- Primary categories of process control in semiconductor device fabrication.
 - ♦ Plant management, contamination control, materials handling, and unit operations control (Lee 1990).
- Recipe-based open-loop unit operation.
 - $\diamond\,$ Based on off-line optimization.
 - $\diamond\,$ Inflexible and non-robust.
- Real-time feedback control.
 - $\diamond\,$ Robust and flexible.
 - ♦ Feedback control of MOCVD growth of submicron compound semiconductor films (Warnick and Dahleh 1998).
 - Plasma enhanced chemical vapor deposition: Modeling and control of deposition spatial uniformity (Armaou and Christofides 1999).

ECR PECVD REACTOR

Electron cyclotron resonance (ECR) PECVD reactor.

- Experimental ECR high density PECVD reactor.
 - $\diamond\,$ 6-inch stainless-steel chamber and 4-inch aluminum sample holder.
 - \diamond Optical ports are installed for plasma diagnostics.

PECVD PROCESS FLOWCHART

Flowchart of the experimental process system.

- Zirconium tetra-tert-butoxide $[Zr(OC_4H_9)_4]$ (ZTB) as MO precursor.
- Bubbler heated to 65° C. Ar: carrier gas. O_2 : oxidant.

OPTICAL EMISSION SPECTROSCOPY

- Ocean Optics MC2000 OES system.
 - $\diamond~5$ channels of 2048 pixels CCD arrays.
 - $\diamond\,$ Covering the wavelength range between 200 nm to 1000 nm.
 - $\diamond\,$ Optical emission spectra taken at 1 inch above the wafer.

X-RAY PHOTOELECTRON SPECTROSCOPY (XPS)

- X-ray photoelectron spectroscopy system.
 - ♦ $Al K_{\alpha}$ x-ray radiation source.
 - $\diamond\,$ VG ESCALAB 5 electron spectrometer.
 - $\diamond\,$ Surface C 1s peak at 284.6 eV as reference.

REAL-TIME FEEDBACK CARBON CONTENT CONTROL

- Control problem formulation:
 - $\diamond\,$ Lower carbon content.
 - $\diamond\,$ Eliminate variations of carbon content of ZrO_2 thin films.
 - $\diamond\,$ Convert the batch control problem to a set-point regulation problem.
- Estimation:
 - $\diamond\,$ Carbon content estimation using in-situ (real-time) OES measurements.
 - ♦ Carbon content estimator calibration using ex-situ (off-line) XPS measurements.
- Manipulated variable:
 - $\diamond~O_2$ mass flow rate.

CARBON CONTENT ESTIMATION USING OES

• Carbon content is correlated with optical emission intensity ratio of C_2 to O (Cho et al., 2001).

• Linear regression formula:

$$X^s_C = A\gamma$$

CARBON CONTENT ESTIMATION USING OES

• Real-time carbon content estimation model:

$$X_C(t) = A \frac{\int_{T_0}^t \gamma(s) ds}{t - T_0}$$

- Real-time carbon content estimation model in discrete-time form:
 - Explicit expression

$$X_C(k) = A \frac{\sum_{i=k_0}^k \gamma(i)}{k - k_0} \quad k > k_0$$

- Recursive expression

$$X_C(k) = \frac{A}{k - k_0} \gamma(k) + [N(k - 1)] \frac{k - k_0 - 1}{k - k_0} \quad k > k_0$$

REAL-TIME CARBON CONTENT CONTROLLER

• Proportional-integral control algorithm is employed:

$$U(t) = K_c \hat{e}(t) + K_i \int_{t_0}^t \hat{e}(\mu) d\mu + \bar{R}_f$$
$$\hat{e}(t) = e(t) |e(t)| > \epsilon$$
$$= 0 |e(t)| \le \epsilon$$

• Controller expression in discrete-time recursive form:

$$U(k) = U(k-1) + K_c[\hat{e}(k) - \hat{e}(k-1)] + K_i T_s \hat{e}(k)$$

• Manipulated variable: O_2 mass flow rate.

$$f_{O_2}(k) = \frac{f_{Ar}(k)}{U(k)}$$

REAL-TIME CARBON CONTENT CONTROL SYSTEM

Block diagram of the closed-loop system.

COMPUTER-BASED CONTROL SYSTEM

- Pentium III 700 MHz PC with 512MB RAM.
- National Instruments LabVIEW for Windows Version 6.1.
- National Instruments 16 bit DAQ boards: PCI-6034E and NI 6704.

OPEN-LOOP DYNAMICS

• Carbon content takes considerably long time to reach steady state.

PROCESS IDENTIFICATION

- The relationship between the steady-state of γ and R_f is almost cubic.
- The input/output dynamics can be approximated by a first-order system with a small time constant.

CONTROLLER TUNING

- Process system is simulated using Simulink.
- Controller is pre-tuned by simulation using Ziegler-Nichols method.
- The controller parameters are further adjusted based on the experimental conditions to achieve desired performance.

CLOSED-LOOP DYNAMICS

- Carbon content is controlled at desired value with little fluctuation.
- Carbon content and transition time is reduced significantly under feedback control.

XPS ANALYSIS

- C C peaks are mostly due to the ambient contamination.
- Carbon peak area decreases consistently with decreasing set-point.

CARBON CONCENTRATION AND O/Zr RATIO

- The actual carbon concentration in the deposited films matches very well with the corresponding set-points.
- Fully stoichiometric grown ZrO_2 films are obtained by feedback-controlled depositions.

CONCLUSIONS

- Real-time feedback control of carbon content of ZrO_2 thin films.
 - \diamond Real-time carbon content estimator using optical emission intensity ratio of C_2 and O by OES.
 - $\diamond~$ Proportional-integral feedback controller.
- Implementation of real-time carbon content controller and experiments.
 - $\diamond~{\rm A}$ computer-based carbon content control system is implemented on a PECVD reactor.
 - ♦ Experimental results suggest that low carbon content, small variation, and robust operation can be achieved with feedback control.
 - $\diamond~{\rm XPS}$ thin film characterization verified feedback control performance.
- Combination of OES and XPS can be used to estimate other film species.

ACKNOWLEDGEMENT

• Financial support from the NSF (ITR), CTS-0325246, is gratefully acknowledged.