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INTRODUCTION

e Incentives for chemical process control.

Products
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Regul ations

¢ Need for continuous monitoring and external intervention (control).

Raw Materials
—| Chemical Process

e Objectives of a process control system.
¢ Emnsuring stability of the process.
¢ Suppressing the influence of external disturbances.

¢ Optimizing process performance.
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BASIC CONCEPTS IN PROCESS CONTROL

e Process variables.
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e Feedback control loop.
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A CONTINUOUS CRYSTALLIZER

Solute

Crystals
Product
e Manipulated variables
¢ Solute concentration ¢ Inlet stream flow rate
¢ Seeding ¢ Heating/Cooling
e Measured output variables
¢ Crystal concentration ¢ Solute concentration

¢ Crystal size distribution

e Controlled output variables

¢ Crystallization stability ¢ Shaping crystal size distribution



APPROACHES TO CONTROLLER DESIGN

e Feedback control loop.
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e Approaches to controller design

o (Classical control

> Proportional control

> Proportional-Integral control

g - -
INFORMATION

> Proportional-Integral-Derivative Control

¢ Model-based control

> Nonlinear control

> Optimization-based control (Model Predictive Control)



A CONTINUOUS CRYSTALLIZER: MODELING

Solute

. Crystals

Product

. o

e Modeling assumptions:
¢ Perfect mixing and isothermal operation.
¢ No particle breakage and agglomeration.

¢ No product classification.



MATHEMATICAL MODEL

Nucleation:

Q) = €k2€$p<—(ck_3’1)2>

Cs

Growth:

on A(R(t)n)

ot or T’

_ — 2 n(0,6) = Q(t)/R(t)

Mass balance equation:

de (co—p)  (p—¢)  (p—c)de
dt €T + T + e dt

> 4
€ = 1—/ n(r,t)=mr3dr
0 3




OPEN-LOOP BEHAVIOR

e Unique unstable steady-state surrounded by limit cycle.

e Open-loop profile of crystal concentration (left) and total crystal size

(right) for different number of discretization points.
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e Feedback control is needed to achieve stabilization.



FEEDBACK CONTROL SYSTEM

e Schematic diagram for the continuous crystallizer
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STABILIZATION USING PI CONTROL

e Closed-loop output (crystal concentration, left figure ) and manipulated
input (solute concentration, right figure) profiles under PI control, for a 0.5

increase in the set-point (Z( is the controlled output).
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STABILIZATION USING CONSTRAINED PI CONTROL

e Closed-loop output (crystal concentration-left) and manipulated input

(solute concentration-right) profiles
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e Closed-loop instability owing to input constraints.



PARTICULATE PROCESS MODEL

e Spatially homogeneous process:

¢ Population balance that describes particle size distribution:

on
ot

(G (z,1)n)

or

+w(n,x,7), 1n0,t) =b(x(t))

¢ Material and energy balances:

T

= f(x)+ g(z)u(t) + A/Ormwa(%ﬁ x)dr

¢ Controlled output:

t € IR: time,

yi(t)

/Ormm ci(r)h(n(r,t), x)dr

r . particle size, n € IR: particle size distribution.



PARTICULATE PROCESS MODEL

e Notation:

o x € IR™: vector of continuous-phase variables.

o u € IR™: manipulated input vector

¢ y; € IR: controlled output.

o f(x),g(x),b(x(t)), G(x,r),w(n,z,r) : nonlinear functions.
o b(x(t)): nucleation rate

o G(x,r) : growth rate.

o w(n,x,r) : breakage/agglomeration processes; product removal.

/rmaa?
o A / a(n,r, x)dr : Mass transfer rate to all particles in the
0

population - Heat of nucleation/growth.



ISSUES IN PARTICULATE PROCESS CONTROL

¢ Population balance is a nonlinear distributed parameter system.

> Not directly suited for controller design.

Solute

¢ Nonlinear behavior:

> Arrhenius dependence of reac-

tion rates on temperature.

> Complex reaction mechanisms.
| Crystels

¢ Model uncertainties:

Product

> Unknown process parameters.

> Exogenous disturbances. . .
Continuous crystallizer

¢ Input and state constraints:
> Limited capacity of control actuators.
> Operating ranges for process variables (environmental, safety, quality
constraints).
¢ Limited process state information

> Inaccessible states for on-line measurements.



MODEL REDUCTION OF PBMs

e Population balance model:

% _ _3<G§;T>”>+w<n,x,r>, n(0,£) = b(x(t))

t = f(z)+g(x)u(t) + AATmawa(n,r, x)dr

e Method of weighted residuals and approximate inertial manifold.

o Step 1: Expansion of n(r,t) in an infinite sum

n(r,t) = ) ax(t)or(r)

ai(t) : time-varying coefficients,

¢r(r) : global basis functions defined on r € [0, 7,42
o Step 2: Substituting in the PBM

o Step 3: Inner product in Ls|0, 74| with weighting functions ,, (7);
infinite set of ODEs in time:



MODEL REDUCTION OF PBMs

/ormamwm(r)ZQbk(r)aagt(t) dr — —Zak(t)/ormmwm(?“)6(G($7§r)¢k(r)) o
+/Tmax¢m(’r)w( ai(t)r(r), z,r)dr, n(0,1) = b(xz(t))
0 k=1

m=0,1,...,00

o= 7o)+ gy + A [ (S ar@on(r). )i

o Step 4: Truncation of the infinite set of ODEs to derive a finite (n 4+ N) set
of ODEs:

ar = f(dlmjj)

@)+ g@u®)+ A [ (Y aon(r). na)dr

SIR
|




MODEL REDUCTION OF PBMs

0
e When 7, 7 are continuous and u(t) =0, then for all ¢ € |0, 00):

or

l1m ||777“t )|l =0

||M2

e When v, =7 : MWR reduces to the method of moments.

e Use of approximate inertial manifolds is possible.



APPLICATION TO A CONTINUOUS CRYSTALLIZER

Solute

Crydtals

Product

e Mathematical model:

on d(k1(c—cs)n)

n k3

57 — 5 = + §(r — 0)ekgexp(— (L - 1)2)
de _ (eo—p) (p=c) (p—c)de

T € dt




MODEL REDUCTION OF CONTINUOUS CRYSTALLIZER

e Method of moments:

m; = / rjn(fl“,t)dr, j=0,...,00
0
e Infinite set of ODEs:
ks
N 2
c 1
dmg mo 4 <—— )
@t _ "0 12 . c.
dt T —|_< 37Tm3> 2€
dm; .
ZZJ — _ﬁ—l—jlﬁ(C—cs)mj_l, i=1,2,3,..., 0
T
@ — CO_C_47TT(C_CS)m2(,0—C)
dt | 4 .
T — T
3 T3




MODEL REDUCTION OF CONTINUOUS CRYSTALLIZER

e Finite set (144) of ODEs:

ks
- 2
1
dmg mo 4 <__ )
o T (122 k Cs
dt T +< 37Tm3) >
dm; -
% — —%+jk1(c—cs)mj_1, 7=12,3
@ B co—c—4nT(c— cs)ma(p — ¢)
dt ( 4 )
T 1——7Tm3
3

¢ Dominant dynamics are low-dimensional.



OPEN-LOOP BEHAVIOR PREDICTED BY DISTRIBUTED
PARAMETER AND MOMENT MODELS

e Open-loop profiles of crystal concentration (left), total crystal size (right),

and solute concentration (bottom).
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CONTINUOUS CRYSTALLIZATION

Control problem specification

Solute

Crystals

Product

-

e Mathematical model:

on J(ki(c—cs)n) n ks

55 5 . + 6(r — 0)ekgexp( ( T 1>2)
de — (co—p)  (p—c)  (p—c)de

dt €T i T i € dt

e Control problem: u(t) = ¢y — cos, y(t) = / n(r,t)dt.
0



GEOMETRIC NONLINEAR CONTROL

e Feedback linearization:

¢ Controller synthesis formula

_ 1 —I"h r—k
Ly 'hiz) (” e ZM " )

Lie derivative notation: L¢h(z) = o ().
o Input/Output Dynamics v

dry dr—ly d
@ T o H e 1dt+ﬂry - v
B1,- -+, 0, are tuning parameters (time constants).

e Nonlinear state estimator design:
¢ Nonlinear Luenberger-type state estimator.

% = f(n)+g9mu+ Ly — h(n))

¢ L: observer gain.



CONTINUOUS CRYSTALLIZATION
Closed-loop simulation results

Closed-loop output profile under nonlinear and PI control.
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ADVANCED MODEL-BASED NONLINEAR CONTROL

e State space description:

¢ x € IR™ : process states

¢ y; € IR : controlled outputs

Model

uncertainty
??2°7

Input constraints

o u; €U C IR : manipulated inputs
o 0 € VW C IR : uncertain variables

y,

—

Measured outputs

.

Y,




CONTROL PARADIGMS FOR CONSTRAINED UNCERTAIN
NONLINEAR SYSTEMS

u(t) yO) § -
a  NAS/a,
time time
"Traditional"
paradigm
u(t) U

Step 2 ‘ Clipping

i

time

Anti-windup/ ’

Conflict

‘ D|rect|onallty
‘compensatlo

Direct
paradigm

e Issues of practical implementation:

|
B

¢ Computational complexity
o Characterizing closed-loop stability properties

¢ Robustness to constant and time-varying uncertainty



BOUNDED ROBUST OPTIMAL CONTROL
(El-Farra and Christofides, Chem. Eng. Sci., 2001; 2003)

e Basic conceptual tools:
¢ Lyapunov theory
¢ Bounded control

¢ Inverse optimal control theory

e Integrated framework for nonlinear control:

¢ Robust stability

* Arbitrary degree of attenuation of plant-model mismatch
¢ Optimality
* Avoids wasteful cancellation of process nonlinearities

¢ Explicit constraint-handling

* Avoids performance deterioration

¢ Explicit characterization of stability region

* A priori knowledge of feasible initial conditions



BOUNDED ROBUST OPTIMAL CONTROL
(El-Farra and Christofides, Chem. Eng. Sci., 2001; 2003)

-

X = f(x) + G(X)u + W(x)0

y =h(x)

Bounds on
uncertainty

(6y,)

lul £ Upax
dt

u:P(x,v,umaX,eb)

Bounded robust
optimal controller

e

Stability region
Q (Umax-6,)

x Multivariable interactions

Process
model

Controller
design
elements

~ Controller
implementation

* Accessibility of process states for measurement



NONLINEAR CONTROLLER SYNTHESIS

e Constrained low-order ODE system:

ar = f(akaj)a u € [uminauma,ac]

r = f(z)+g(@)u(t) + A/rmaxa(deqﬁk(r),r, T)dr
0 k=1

e State feedback controller synthesis:

¢ Bounded Lyapunov-based control law

1
u = —§R_1(£)LQV

¢ Closed-loop properties under active input constraints
> Exponential stability / Asymptotic set-point tracking
> Optimality

¢ Explicit characterization of the region of closed-loop stability.

LJFV S 'U,maw|LgV‘




OUTPUT FEEDBACK IMPLEMENTATION

e Combination of state feedback with state observer:

¢ State observer: nonlinear Luenberger-type observer.

¢ Nonlinear output feedback controller.

W = fw)+gwu+ Ly - h(w))
u = —%R_l(w)Lgv

where w is the estimate of .

e Closed-loop stability region practically preserved for large observer gain.

e Exponential stability of constrained closed-loop ODE system implies

exponential stability of constrained closed-loop DPS.



APPLICATION TO A CONTINUOUS CRYSTALLIZER

Solute

| Crystals

Product

e Process model:

k3
- 2
(&)
on = —kl(c—cs)a—n _ +6(r — 0)ekae \Cs
ot or T
de_ (co—p) (p=c) (p—c)de
dt €T T e dt

e Control problem:

u(t) = o, ylt) = / o t)dr




COMPUTATION OF ADMISSIBLE SET-POINTS

Small set of algebraic equations:

0 = f(ax,z)
Toma N
0 = f@+g@u®)+A[ oY aon(r).nadn
0 k=1
u e U = [Uminaumam]

Computation of all equilibrium points for v € U using approximate model.

D = {(aps,zs), V u’ € U}

Computation of admissible set-points.

Straightforward computation; approximate set-points for the population

balance model.



COMPUTATION OF ADMISSIBLE SET-POINTS

e Steady-state moment model in dimensionless form:
—F

0 = —xg,+ (1 —23,)Dae Us
0 = =21, +¥so,
0 = —To, +ysy,
0 = —&3, +YsTo,
0 — 1 —gs — (a - Us)Ys T2, LY
1 — 3, 1 — 3,

e Set of admissible set-points for u € [0, 6]

0.45
04 -

0.35 r
03
0.25 r
0.2 +
0.15
0.1
0.05

0




NONLINEAR CONTROLLER DESIGN

e Model reduction via method of moments:

m;

= / rin(r,t)dr, j=0,...,00
0

e Finite set (14+4) of ODEs.

e Nonlinear output feedback controller:

dwo
a;it
)
dt
dwy
dt

u(t)

—F

2
—wo + (1 —w3)Dae ¥4 + Li(xg — wo)

—Ww; +w4wj_1, ] = 1,2,3

1 —ws — (@ — wyp)wawo

u(t)

1 — w3
1 —1

-+ L5(CE0 — CU())+

1—(4}3

_|_




CLOSED-LOOP SIMULATION RESULTS

e Controlled output (left), manipulated input (right) and crystal size

distribution (bottom) profiles.
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CLOSED-LOOP SIMULATION RESULTS

Parametric uncertainty

e Controlled output (left), manipulated input (right) and crystal size

distribution (bottom) profiles.
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CLOSED-LOOP SIMULATION RESULTS

Unmodeled actuator/sensor dynamics

e Controlled output (left), manipulated input (right) and crystal size

distribution (bottom) profiles.
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NONLINEAR CONTROL THEORY VS. PROCESS CONTROL
PRACTICE

e Nonlinear control theory and tools:

¢ Require thorough understanding of the process (‘sufficiently’ accurate

process models).
¢ (Geometric control, Lyapunov-based control, feedback linearization, etc.

¢ Allow rigorous analysis of closed—loop stability and performance

properties.

e Process control practice:

o Proportional Integral Derivative (PID) controllers, Linear Model
Predictive Control (MPC).

¢ Do not account for the complex dynamics of the process.

e Nonlinear control implementation requires redesign of control hardware:

(Use nonlinear control theory to aid process control practice]




NONLINEAR SYSTEMS WITH INPUT CONSTRAINTS

e State—space description:

o x(t) € IR™ : state vector o u(t) €U C IR™ : control input
o U C IR™: compact & convex o ¢ = (0 € interior of U

o (0, 0) an equilibrium point

e Stabilization of origin under constraints



MODEL PREDICTIVE CONTROL

e Control problem formulation

¢ Finite-horizon optimal control:
[ P(xz,t) : min{J(x,t,u(-))| u(-) € UA}j

¢ Performance index:

t+T
Jetul) = Fla+T)+ [ [l Gl + lus)}] ds
t
> || - o : weighted norm > @), R > 0 : penalty weights
> T" : horizon length > F'() : terminal penalty
¢ Implicit feedback law _ past | future
x e p;re(;ict.ed‘st;te.tr;jetct'ory
M@ = () .
17 s computed mani puizted input
“repeated on-line optimization” . _\_ trajectory
T

prediction horizon



MODEL PREDICTIVE CONTROL

e Formulations for closed-loop stability:

(Mayne et al, Automatica, 2000)
¢ Adjusting horizon length, terminal penalty, weights, etc.

¢ Imposing stability constraints on optimization:

> Terminal equality constraints: [x(t +T) = O]

e Issues of practical implementation:

¢ Optimization problem non-convex
> Possibility of multiple, local optima
> Optimization problem hard to solve (e.g., algorithm failure)

> Difficult to obtain solution within “reasonable” time

¢ Lack of explicit characterization of stability region

> Extensive closed-loop simulations

> Restrict implementation to small neighborhoods



LYAPUNOV-BASED CONTROL

e Explicit nonlinear control law:

Uy = —k(&, Umaz)(Lg, V)t

¢ Example: bounded controller (Lin & Sontag, 1991)

> Controller design accounts for constraints.

e Explicit characterization of stability region:

[Qa(umax) = {zeR":V,(z) < &V, (z) < 0}]

¢ Larger estimates using a combination of several Lyapunov functions



UNITING BOUNDED CONTROL AND MPC
(El-Farra, Mhaskar & Christofides, Automatica, 2004; IJRNC, 2004)

e Objectives:

¢ Development of a framework for merging the two approaches:

> Reconcile tradeoffs in stability and optimality properties
> Explicit characterization of constrained stability region
> Possibility of improved performance

> Implement computationally inexpensive MPC formulations

e Central idea:

Decoupling “optimality” & “constrained stabilizability”

¢ Stability region provided by bounded controller
¢ Optimal performance supplied by MPC controller

e Approach:
¢ Switching between MPC & a family of bounded controllers



OVERVIEW OF HYBRID CONTROL STRATEGY

Supervisory layer

Switching logic

- i=7? - *®
"Fallback contollers" \/
. Q, (Unax) E
S e fooumapal Lo etecices]
S - R S
B T AT
IQZ (Unax ) . ° : Linear/Nonlinear
: MPC
BEIC, o) N v B
Q)
[ X = fx®) + g(x®) u( |
[U(O)] < U max
Constrained Nonlinear Plant
e Hierarchical control structure
¢ Plant level o Control level ¢ Supervisory level

e Overall structure independent of specific MPC algorithm used

¢ Could use linear /nonlinear MPC with or without stability constraints



STABILITY-BASED CONTROLLER SWITCHING

e Switching logic:

[ LVi(z) + LyVi(2)M (2(T*)) > o]

0 (u,..) Q(U,.)

x,(0)
¢ Initially implement MPC,

2(0) € Uk (Umaz) V4 (X(T))>0

, , "Switch”
¢ Monitor temporal evolution

of Vi (M (t))

o Switch to bounded controller
only if V(2™ (1)) starts to in-

crease

—e MPC
——e& Bounded control



IMPLICATIONS OF SWITCHING SCHEME

e Switched closed-loop inherits bounded controller’s stability region

o A priori guarantees for all z(0) € Q(Umaz)

e Lyapunov stability condition checked & enforced by “supervisor”
¢ Reduce computational complexity of optimization
o Scheme does not require stability of MPC within Q(t.,q2)
¢ Provides a safety net for implementing MPC
¢ Stability independent of horizon length
e Conceptual differences from other schemes:

¢ Switching does not occur locally
¢ Provides stability region explicitly

o No switching occurs if V(2™ (t)) decays continuously

> Only MPC is implemented = optimal performance recovered



PREDICTIVE CONTROL IN INDUSTRIAL PRACTICE

e A “typical” predictive control design:
¢ Nonlinear process model:

T = f(x) +g(x)u

umin S Uj S umaa:

¢ Linear representation:

r = Ax + Bu

umin S Uj S umaa:

*x Linearization *x Model identification

(around desired steady-state) (e.g., through step tests)
¢ Use of computationally efficient linear MPC (QP) algorithms

¢ No closed-loop stability guarantees for nonlinear system
e Practical value of the hybrid control structure:

¢ Provides stability guarantees through fall-back controllers

¢ Entails no modifications in existing predictive controller design



APPLICATION TO A CONTINUOUS CRYSTALLIZER

e Population balance model:

k3
- 2
()
0 0 P
T —kl(c—cs)—n _ +6(r — 0)ekae \Cs
ot or T
de_ (co—p) (p=c) (p—c)de
dt €T T e dt
e Hybrid control loop structure:
—— Population balance mode
u )ﬂ Y

Hybrid controller based on
the moments model




APPLICATION TO A CONTINUOUS CRYSTALLIZER

e Crystallizer moments model:

tg = —x9+ (1 —x3)Daexp (;—f)
r1 = —x1+yxo
To = —X2+yr:
r3 = —T3+yr:
l—y—(a— x U

¢ Unstable equilibrium point surrounded by stable limit cycle.

¢ Control objective:

> Stabilization at unstable equilibrium point.
> Input constraints: wu € [—1,1].

e Bounded controller: designed using normal form.

e Predictive controller: linear prediction model with stability constraints.
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APPLICATION TO A CONTINUOUS CRYSTALLIZER
Hybrid Controller Design

e State—space description:

¢ Unstable equilibrium point surrounded by limit cycle
o Input constraints: u € [—1, 1]
e Bounded controller:

¢ Normal form representation:

§ = AL+DbI(En) + ba(€,n)u
n = Y(n)




CLOSED-LOOP SIMULATION RESULTS

“Stability-based switching”
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o z(0) = [0.044 0.01 0.022 0.002 0.67 |*' € Qsystem (Umaz)

o MPC with T = 0.25, switching (¢ = 1), J = 3.4259



CLOSED-LOOP SIMULATION RESULTS
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o x1(0): MPC with T" = 0.25 feasible
o x2(0): MPC with T"= 0.25 (no terminal constraints)

o x2(0): switching to bounded controller



CLOSED-LOOP SIMULATION RESULTS
Evolution of Crystal Size Distribution

e Closed loop simulation results of MPC with T" = 0.25 (no terminal

constraints) (left figure).

e Closed loop simulation results of Bounded controller(right figure).

t (hrs) r (mm)



APPLICATION TO A SEEDED BATCH CRYSTALLIZER

e Population balance model:

on on

? — —G(t)ﬁ

d—j = —3pk,G(t)x

dT UA AH
— = — T —T;) — 3—pk,

e Model predictive control loop structure:

q Popul ation balance model
for the batch crystallizer

M PC controller based on
the moments model




APPLICATION TO A SEEDED BATCH CRYSTALLIZER

e Batch crystallizer moments model:

rg = B(t)
1 = G(t)xg
Ty = 2G(t)xy
rs = 3G(t)xo
¢ = =3pk,G(t)xs
T = —]\Zjép (T'—1T3) — BAC—I:pkUG(t):Ug

e Manipulated variables
¢ Solute concentration ¢ Heating/Cooling
e Measured output variables

& Solute concentration ¢ Crystal size distribution

e Controlled output variables

¢ Shaping crystal size distribution



APPLICATION TO A SEEDED BATCH CRYSTALLIZER

e Optimization problem:

L3
max —
L0

s.t. ijz’n < Tj < ijax

s < c< ¢y

3 . the third-order moment of the moments model,
total volume of crystals.

0 . the zero-order moment of the moments model,
total number of crystals.

Timin . the lower bound of the jacket temperature.
Timae :+ the upper bound of the jacket temperature.
Cs . the saturation concentration at certain reactor temperature.

Cm . the metastable concentration at certain reactor temperature.



T.(°C)

C (9/9)

APPLICATION TO A SEEDED BATCH CRYSTALLIZER
Open Loop Simulation Results

e Open loop simulation results with linear cooling strategy. Results include
the evolution of crystal size distribution(right figure), and the trajectories

of the jacket temperature and the reactor concentration(left figure).

o Average crystal volume of the final product is 6.84 x 107 um3.

05 TR
100 \\\\\
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APPLICATION TO A SEEDED BATCH CRYSTALLIZER
Closed Loop Simulation Results

e Closed loop simulation results with MPC. Results include the evolution of
crystal size distribution(right figure), and the trajectories of the jacket

temperature and the reactor concentration(left figure).

o Average crystal volume of the final product is 7.58 x 107 um3.
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TUNING CLASSICAL CONTROLLERS USING NONLINEAR
CONTROL THEORY: PROCESS CONTROL PRACTICE

e Proportional Integral Derivative (PID) controllers:

Tuning Linear
Methods Model
oy Uy g0

. u
>T © & PIDController |——e|  Process >

s

e “Fasy” to use and implement:

¢ Tuning rules based on linear process models.

e Do not account for

¢ Process nonlinearities, uncertainties, constraints etc.

e Extensive retuning/poor performance.



TUNING CLASSICAL CONTROLLERS USING NONLINEAR
CONTROL THEORY: NONLINEAR CONTROL THEORY

e Nonlinear controllers:

ysp U y

——! Nonlinear Contraller ———{ ~ Process >

?

¢ Handle process uncertainties/time delays/state estimation/...

¢ Provide rigorous results and analysis.
¢ Require better understanding of the process (detailed models).

¢ Implementation requires redesign of existing control hardware.

e Gap between
> Nonlinear control theory tools.

> Process control practice (K., 7, 7q)-

(Use /develop nonlinear control tools for PID controller tuning]




TUNING GUIDELINES

e Tuning framework

Tuning Nonlinear
guidelines Controller
oy Ty g0
Process y

;? € & PID Controller u_’ x=f(x)+g(x)u =

¥s

y=h(x)

¢ Design a nonlinear controller that accounts for the complex process

dynamics.

¢ Compute, but not implement, the control action as prescribed by the

nonlinear controller.

¢ Set up and solve an optimization problem:

> The objective function ‘measures’ the difference between the control
action of the PID and the nonlinear controller.
> The decision variables are the PID controller parameters.



ESTIMATION AND CONTROL OF SIZE DISTRIBUTION IN
AEROSOL PROCESSES

e Aerosol processes are widely used for the production of ceramic
powders, such as, TiO, SiO, and other nano-/micron-sized particles.

e Mechanism of production and growth:
Birth of monomers by gas-phase chemical reaction
[} condensation, aggregation of monomers
Nucleation of aerosol particles
[} coagulation

Nano- /micron- sized particles

e Population balances models (PBMs): Natural modeling framework.

¢ Main features: nonlinear and distributed nature.



AEROSOL PROCESS MODEL

Particulate phase

e Population balance equation:

on

N J(G(z,v)n)

ot

ov

— I (v

2],

")o(v —v7)

B(v— 0,7, 7)

n(v —v,t)n(v,t)do

vt/ﬁ

aerosol size distribution function

time

particle volume

growth function

nucleation rate

coagulation coefficient

v,t)dv



AEROSOL PROCESS MODEL
Continuous phase

e Mass and energy balances:

dx _ L [P

— = +4+f(@) +g(@)u(t) + A/ a(n, v, z)dv
0

z(t) :  n~-dimensional vector of continuous phase
variables (e.g., temperature, concentrations)

f(x),5(x),a(n,v,z) : nonlinear vector functions
A, A :  constant matrices
oo
A / a(n, v, x)dv :  mass/heat transfer from the continuous to
0

the particle phase

u(t) :  manipulated variable

e System of nonlinear first-order ordinary differential equations.



METHODOLOGICAL FRAMEWORK FOR ESTIMATION AND
CONTROL

e Aerosol process model.

on  O0(G(x,v)n)

—IT(v*)o(v — v™)

AL

ot i Ov -

_ % / Blv — 5,5, F)n(v — 5, (5,5 — n(v.1) | B, 5, 7)n(5, 1)do
0

e Methodology for estimation and controller design.

¢ Nomnlinear model reduction of population balance equations.

> Lognormal aerosol size distribution.
> Method of moments.

¢ Nonlinear output feedback controller design.

¢ Validation through implementation on the sectional model.



LOGNORMAL AEROSOL SIZE DISTRIBUTION

e Many aerosol size distributions can be adequately modeled by lognormal
functions (Pratsinis, JCIS, 1988).

1 In?(v/vy)\ 1
t) = — B
n(/m ) 3V 2mlno b ( 18In2o ) (v

v, : geometric average particle volume

o : standard deviation

ln20:lln Mo M,
0" \ T2

My, My and My are the three leading volume weighted

moments, and:

Mi(t) = / vPn(v,t)dv = Mov’;ea:p(gk2ln2a>
0

e Lognormal aerosols can be adequately described by moment models.



DERIVATION OF MOMENT MODEL

on  I(G(z,v)n) . x
E—I_ 5 —I(v")6(v —v™)

/ Bv — 0,7, %)n(v —v,t)n(v,t)dv

vt/ﬁ v,t)dv

e Multiplication with v* and integration over all particle size.
e Approximation of n(v,t) by a lognormal function.

e Aerosol dynamics over the entire particle spectrum is described by using
harmonic means of dimensionless coefficients in free-molecular and

continuum regions.



MOMENT MODEL

e Zeroth moment (aerosol concentration):

dN

o — I/ . N2
do :
e First moment (aerosol volume):
av
— = T'k* S—1)N
7 +n(5—-1)
e Second moment:
d
d—‘? I'E*? +2¢(S — 1)V +2¢V?

¢, ( : dimensionless coagulation coeflicients

1 1 1 1 1 N 1
§ Erm fC ¢ C¢rm Co
e, n : dimensionless condensation coeflicients
1 1 1 1 1 1
_|_

€ €ErM €C n N M nc




MODEL USED FOR ESTIMATOR AND CONTROLLER DESIGN

e Moment model:

aN
do
dV
= = Ik S —1)N
7 + 1( )

A%
d—; = T'k*? 4+ 2¢(S — 1)V +20V?

— I/_£N2

e Material and energy balances (continuous phase):

i = F@+a@uw+A [ o2

e Introducing x = [N V V5 7|1

dx
T = J@)+ g
y = h(z)

y: controlled output variable.



NONLINEAR ESTIMATOR / CONTROLLER DESIGN

dx
T = I+ gl
y = h(x)

e Feedback linearization:

¢ Controller synthesis formula

_ 1 _ I"h r—k
T LIk (” e ZM " )

Lie derivative notation: L¢h(z) = P ().
¢ Input/Output Dynamics o

d"y dr_ly dy
7 + 01 7 4 B 1dt+5ry = v

B1,- -+, 0, are tuning parameters (time constants).

e Nonlinear state estimator design:

¢ Nonlinear Luenberger-type state estimator.

% = f()+gmu+ Ly — h(n))

¢ L: observer gain.



APPLICATION TO A BATCH AEROSOL REACTOR

e Batch aerosol reactor: A+ B — C.
e Chemical reaction, nucleation, condensation and coagulation.

e Sectional model:

AN, * * L3 473

— = I(v*)0(vg < v* < vyp) — §3ﬁ1,1N12 — N1iz:;46z‘,1Ni — &1V,
I—11—1

dN| . § 1 17

T = I(U )9(1)1—1 < v < vl) + 57;21; ﬁi,j,lNiNj

-1
_ 1. _
— N, E °B; 1 N; — igﬁz,z]\ff
i—1

—N; Z B IN; + &1 N1 — &Ny,
=111



APPLICATION TO A BATCH AEROSOL REACTOR

e Sectional model(cont.):

AN,
dt

dno
dt

dCh

dt
dCs

dt
dT

dt

mlml

I(v*)0 (V1 < V" < ) + = Zzlﬁ”mNN

=1 5=1
—NZZ%,mN
1=1
1., -
_§3ﬁm,mN37, + gm—le—l

k,C1CoNgy — ITk*—

. az /Uz U% 1+ Kn Jo
YL o o) 1+ 1.71Kn + 1.333Kn2

V-1

—k,.C1C5
—k,.C1C5

(k.C1C2AH, +4UDZY (T, — T))C;}

pv



MOMENT MODEL / CONTROL PROBLEM
e Moment model.

dN

o — I/ . N2

dt :

dv

— = TI'k* —1)N

dV-

d—; = I'E*2+2¢(S — 1)V +20V?
d o

d—f — 00102 — [,k* — 77(5 — 1)N
dC, -
1 Yy

di 10105
dCy _ =
22 Yy

ar 2C1C5

dT _ o _
il BCCT+ ET(Ty, —T)

e Control problem
¢ Controlled output: v, at the end of the batch.
¢ Manipulated input: T,.



ESTIMATION AND CONTROL OF SIZE DISTRIBUTION IN
AEROSOL PROCESSES
(Kalani and Christofides, AIChE J., 2002)

e Spatially homogeneous aerosol processes described by population balances.

e General framework for nonlinear state estimation and feedback control.
¢ Sectional and moment approximations.
¢ Estimator and controller design based on the moment models.

¢ Validation through implementation on the sectional model.

e Application to an aerosol process with nucleation, condensation and
coagulation.



OPEN-LOOP SIMULATION RESULTS

e Profiles of NV computed by the sectional (solid line) and moment (dashed
line) models(left figure).

e Profiles of aerosol size distribution function at ¢t = 80 sec(right figure).
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OPEN-LOOP SIMULATION RESULTS

e Profiles of d,, computed by the sectional (solid line) and moment (dashed

line) models(left figure).

e Profiles of 0 computed by the sectional (solid line) and moment (dashed

line) models(right figure).




OPEN-LOOP STATE ESTIMATION RESULTS

e Profiles of d,, computed by the sectional model (solid line) and the state

estimator (dashed line) under nominal conditions(left figure).

e Profiles of d,, computed by the sectional model (solid line) and the state
estimator (dashed line) under parametric uncertainty in p, Dy, vo(right
figure).
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CLOSED-LOOP SIMULATION RESULTS

e Open-loop profile (dashed line) and closed-loop profile (solid line)
of dp, under uncertainty in the reaction rate constant(left figure).

e Manipulated input profile(right figure).
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Time (sec.)



CLOSED-LOOP SIMULATION RESULTS

e Open-loop profile (dashed line) and closed-loop profile (solid line)

of dp, under uncertainty in the saturation pressure(left figure).

e Manipulated input profile(right figure).

Tw - Tws (K)

L L L L L L L
10 20 30 40 50 60 70 80

Time (sec.)



SPATIALLY INHOMOGENEOUS AEROSOL PROCESSES

e Spatially inhomogeneous aerosol processes described by

population balances.

¢ A typical aerosol process.

Heat Flux

TiCl, gas ¢ ¢ ¢
T % S ]
T o o °
SR ° O
TiCl, .TiO, . o e O o) Aerosol
o+ — + : o © O
J0, 2, o °°  ° O O] supenson
S 5o
o Chemical Coagulation
2 reaction

e General framework for the synthesis of nonlinear practically-
implementable controllers (Kalani and Christofides, CES, 1999a).

e Application to a titania aerosol reactor (Kalani and Christofides, AST,
2000).



AEROSOL PROCESS MODEL
Particulate phase

e Population balance equation:
on L on N 5’(G(§3 v, Z)n)
ot “ 0z

— I(v*)o(v — v™)

:_//3 — 0,0, Z)n(v — v,t)n(v,t)dv

Ut/g 5, t)do

n(v, z,t) :aerosol size distribution function
t :  time

z . spatial coordinate

v :  particle volume

U, : fluid velocity

G(z,v, 2) : growth function

I(v*) :  nucleation rate

B(v—wv,v,2) : coagulation coefficient



AEROSOL PROCESS MODEL

Continuous phase

e Mass and energy balances:

0z _0r - - [
G = Ag @ +a@un+ A atva
T(z,1) . n-dimensional vector of continuous phase variables (e.g
f(7),9(%),a(n,v,2) : nonlinear vector functions
A A constant matrices
A / a(n,v,x) :  mass/heat transfer from the continuous to the particle

manipulated variable

e Convection-reaction equation: System of first-order hyperbolic PDEs.



METHODOLOGICAL FRAMEWORK FOR CONTROL

e Aerosol process model.

8n + 877, _|_ J(G(Z,v,z)n)
ov

/ B(v—v,0,Z)n(v —v,t)n(v,t)dv —n(v,t)/oooﬂ(v,ﬂ,:i)n(ﬁ,t)dﬂ

—I(v*)6(v —v™)

= AT @)+ g0 + A aln v

e Methodology for controller design.

¢ Nonlinear model reduction of population balance equations.
> Lognormal aerosol size distribution.

> Method of moments.

¢ Nonlinear output feedback controller design. (Christofides and
Daoutidis, AIChE J., 1996)



LOGNORMAL AEROSOL SIZE DISTRIBUTION

e Many aerosol size distributions can be adequately modeled by lognormal
functions (Pratsinis, JCIS, 1988).

1 In?(v/vy)\ 1
t) = — B
n(/m ) 3V 2mlno b ( 18In2o ) (v

v, : geometric average particle volume

o : standard deviation

ln20:lln Mo M,
0" \ T2

My, My and My are the three leading volume weighted

moments, and:

Mi(t) = / vPn(v,t)dv = Mov’;ea:p(gk2ln2a>
0

e Lognormal aerosols can be adequately described by moment models.



DERIVATION OF MOMENT MODEL

ot Ve, T 90

/ B(v—v,0,Z)n(v —v,t)n(v,t)dv

vt/ﬁ v,t)dv

e Multiplication with v* and integration over all particle size.
e Approximation of n(v, z,t) by a lognormal function.

e Aerosol dynamics over the entire particle spectrum is described by using
harmonic means of dimensionless coeflicients in free-molecular and

continuum regions.



MOMENT MODEL

e Zeroth moment (aerosol concentration):

ON ON
0~ Uar TI N

e First moment (aerosol volume):

1% oV .
20 —Uzla—+fk +n(S—-1)N

e Second moment:

% — vzl% + Ik ¢ 2¢(S — 1)V 4 2¢V*?

¢, ( : dimensionless coagulation coeflicients

1 1 1 1 1 N 1
§ Erm fC ¢ C¢rm Co
e, n : dimensionless condensation coeflicients
1 1 1 1 1 1
_|_

€ €ErM €C n N M nc




MODEL USED FOR ESTIMATOR AND CONTROLLER DESIGN

e Moment model:

ON ON .,
0 — vz Th N

oV ov
=5 = vtk (SN
oVs A%

vz _ gVl /7.%2 . 2
~ Va2 + TR 4 2¢(S = DV + 2V

e Material and energy balances (continuous phase):

0x 0T - g

G = Age+I@+g@u0+ A oo

e Introducing x = [N V V5 7|1

ox ox
il A% + f(x) + g(x)u

y = h(r)

y: controlled output variable.



SPECIFICATION OF THE CONTROL PROBLEM

[ : number of control actuators

b'(z) : actuator distribution function

ji = C'h(z) = / e (@h(a(z )z

1

c'(z): depends on performance specifications

l

ox ox .
— = A—+ f(2) +g(2)) (H(z—z) — H(z — zi41)) b’ (2)

a0 . Q

Sl

y'(t) =Ch(x), i=1,---,1



CHARACTERISTIC INDEX

e Lowest order time-derivative of 4* which depends on @'.
7 = C'h(z)

o0y"
ot

ot?

2
2 i n |
0%y — ( %Laj + L | h(x)

o°" it [ =0z
ot ¢ C~ 0z ! (z)
Jj=1
ol—1
: - 65[7]' ; _
+C'L, 8—Laj Ly h(x)b'(z)u'
z
j=1



DISTRIBUTED STATE FEEDBACK CONTROL

e Systems of Quasi-linear PDEs

!
% —A%—I—f Z (2 —2i) — H(z — zi11)) bz(z) Z(t)

ot~ oz £

y'(t)=C'h(z) , 1=1,---,1

£l

e Distributed state feedback controller :
_ 4 —1

o—1
| | C Oz |
@ = |Ciy,L, %L% + Ly h(x)bi(2)
=1 7%
i, i - axj
vt — Cih Zc Y L La, + Ly | h(x)

j=1



DISTRIBUTED STATE FEEDBACK CONTROL

1 Enforces the following input/output response in the closed-loop system:

=1

g
AR

dO‘ g’t
1o gt

1

+gi=v

2 Guarantees local closed-loop stability if:

¢ The roots of the equation
l+vis+--+79s" =0

lie in the open left-half of the complex plane.

¢ The zero dynamics is locally exponentially stable.



DISTRIBUTED OUTPUT FEEDBACK CONTROL
Christofides and Daoutidis, AIChE J., 1996

e Combination of distributed state feedback and state observers

e State observer :

% _ Agn Z (2 —2) — H(z — 2i41)) b (2)@" (2)

9 o
e The eigenvalues of the operator £ = A— + B(z) — P'C'k(z) lie in the

0z
left-half plane



APPLICATION TO A TITANIA AEROSOL REACTOR

e Aerosol reactor used to produce 17705, according to:

TiCly(g) + O2(g) — TiO2(s) + 2Cl15(g)

e Schematic of the process:

Heat Flux
TiCl, gas ¢ ¢ ¢
. T S ]
. o o °

SR O O
TiCl, .Tio, . o _ o © o Aerosol
: + H + . : o © O
C0, 20, o °°  ° O O] supenson

. . . . . / OO O O ] O O o

o Chemical Coagulation
2 reaction

e Chemical reaction and nucleation cannot be distinguished.

e Brownian and turbulent coagulation determine particle size.



PROCESS MODEL

e Process model (lognormal size distribution):

oN
ol
ov
ol
oVl
0l
0C;

00
oT

20
U,

00

C_1176_1276_’3
T,T,
A, Ay, B,C  FE

(7, N)

= = 4 k'p — EN?
oA
p— —¢ Z_ —|— k/xl
9 9y)
= g~ K+ 2V
o
— —gb Z_ L Zk/éi, 1 = ]., ,3
a(g i)
= [AK'Cy + B(T,, — T)] C;,}!

dimensionless concentrations of T:Cl4, Oy and Cls
dimensionless process and wall temperatures

dimensionless constants



SPECIFICATION OF THE CONTROL PROBLEM

e Optimal reactor design to minimize product polydispersity (left figure).

e Effect of wall temperature on geometric average particle diameter (right
figure).

e Controlled output: v, at the outlet of the reactor;

Manipulated input: T;,.

0.4 . . . S

0.35

0.3

0.25

dpg
o
N

12 |

1 1 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.2 0.4 0.6 0.8 1
P9



(YSp'dpg(lvt))/(YSp'dpg(lvO))%

CLOSED-LOOP SIMULATION RESULTS
Nominal case

e Closed-loop profile of v, in the outlet of the reactor under nonlinear

control(left figure).

e Manipulated input profile under nonlinear control (right figure).
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CLOSED-LOOP SIMULATION RESULTS

Unmeasured disturbances in parallel

e Open-loop profile and closed-loop profile of v, in the outlet of the reactor
under nonlinear control (left figure).

e Manipulated input profile under nonlinear control (right figure).
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((dpg(LD) - dpg(L,0) ) / dyg(1,0)) %

CLOSED-LOOP SIMULATION RESULTS

Unmeasured disturbances in series

e Open-loop profile and closed-loop profile of v, in the outlet of the reactor

under nonlinear control (left figure).

e Manipulated input profile under nonlinear control (right figure).
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CLOSED-LOOP SIMULATION RESULTS

Unmeasured disturbances

e Closed-loop profile of v, in the outlet of the reactor under nonlinear

control(left figure).

e Manipulated input profile under nonlinear control (right figure).
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CLOSED-LOOP SIMULATION RESULTS
Parametric Uncertainty

e Closed-loop profile of v, in the outlet of the reactor under nonlinear control
(left figure).

e Manipulated input profile under nonlinear control (right figure).
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CLOSED-LOOP SIMULATION RESULTS
Unmodeled actuator dynamics

e Closed-loop profile of v, in the outlet of the reactor under nonlinear control
(left figure).

e Manipulated input profile under nonlinear control (right figure).

100

400

920

80 |

70

60

50

Tw - Tws (C)

40

30

20

10

1 1 1 1 1 1 1 1
0 200 400 600 800 1000 0 200 400 600 800 1000



SUMMARY

e Methods for nonlinear order reduction and control for various classes of

particulate process.
¢ Model reduction

¢ Model-based controller design
> Geometric, Lyapunov-based and Model Predictive Control

> Control relevant problems:
* Nonlinearity * Uncertainty

* Constraints * State measurements
e Applications to complex particulate processes.

¢ Control of size distribution in crystallization.
¢ Seeded batch crystallizer.

& Aerosol Titania reactor.
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