MODEL-BASED CONTROL OF PARTICULATE PROCESSES

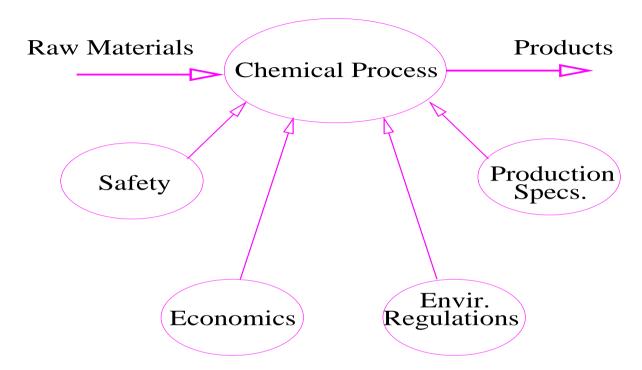
Panagiotis D. Christofides

Department of Chemical Engineering University of California, Los Angeles

NSF Engineering Research Center for Particle Science & Technology Particle Science Summer School in Winter University of Florida, January 2004

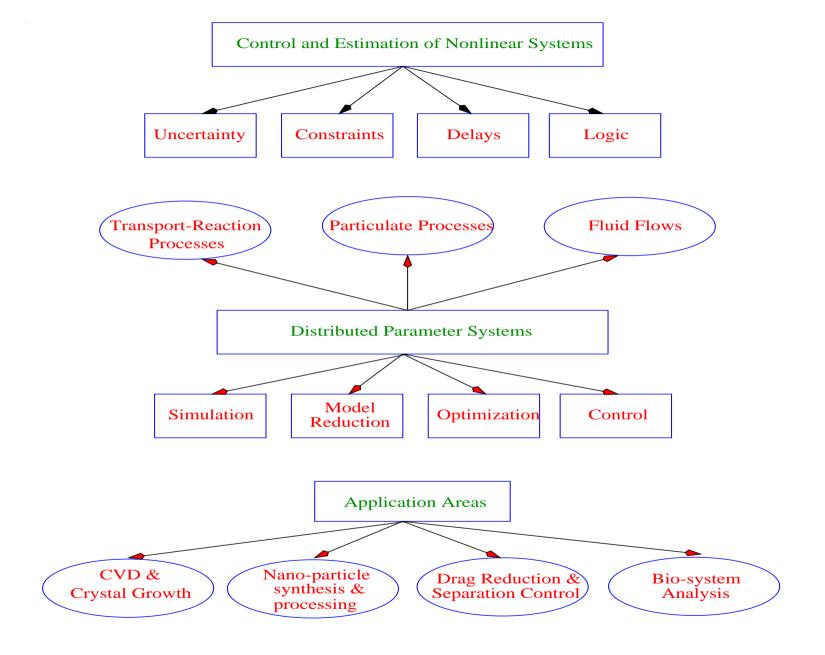
INTRODUCTION

• Incentives for chemical process control.



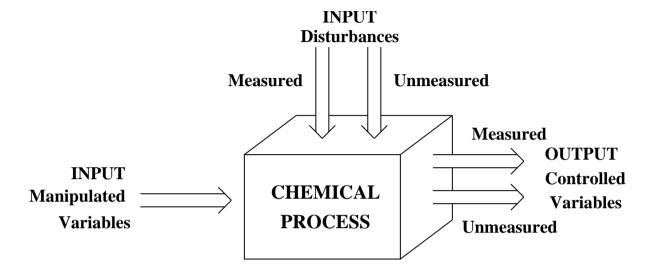
- ♦ Need for continuous monitoring and external intervention (control).
- Objectives of a process control system.
 - ♦ Ensuring stability of the process.
 - ♦ Suppressing the influence of external disturbances.
 - ♦ Optimizing process performance.

PROCESS CONTROL RESEARCH IN OUR GROUP

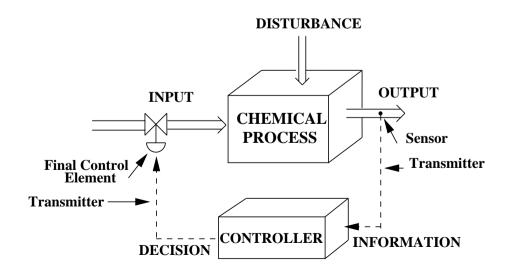


BASIC CONCEPTS IN PROCESS CONTROL

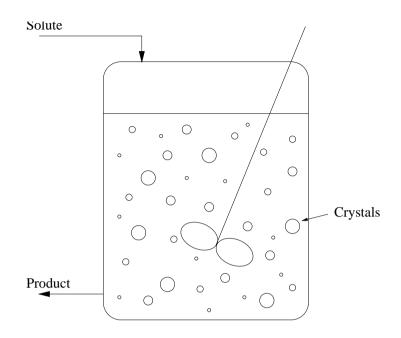
• Process variables.



• Feedback control loop.



A CONTINUOUS CRYSTALLIZER



• Manipulated variables

- ♦ Solute concentration
- ♦ Seeding

- ♦ Inlet stream flow rate
- ♦ Heating/Cooling

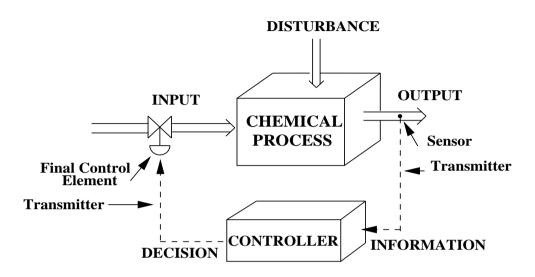
• Measured output variables

- ♦ Crystal concentration
- ♦ Crystal size distribution

- ♦ Solute concentration
- Controlled output variables
 - ♦ Crystallization stability
- ♦ Shaping crystal size distribution

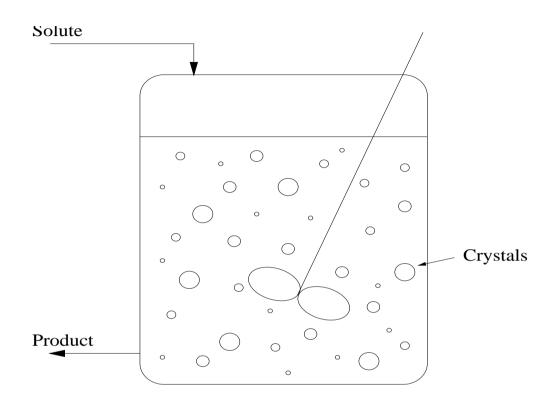
APPROACHES TO CONTROLLER DESIGN

• Feedback control loop.



- Approaches to controller design
 - ♦ Classical control
 - > Proportional control
 - ▶ Proportional-Integral control
 - ▶ Proportional-Integral-Derivative Control
 - ♦ Model-based control
 - ▶ Nonlinear control
 - Optimization-based control (Model Predictive Control)

A CONTINUOUS CRYSTALLIZER: MODELING



• Modeling assumptions:

- ♦ Perfect mixing and isothermal operation.
- ♦ No particle breakage and agglomeration.
- ♦ No product classification.

MATHEMATICAL MODEL

• Nucleation:

$$Q(t) = \epsilon k_2 exp\left(-\frac{k_3}{\left(\frac{c}{c_s}-1\right)^2}\right)$$

• Growth:

$$R(t) = k_1(c - c_s)$$

• Population balance equation:

$$\frac{\partial n}{\partial t} = -\frac{\partial (R(t)n)}{\partial r} - \frac{n}{\tau}, \quad n(0,t) = Q(t)/R(t)$$

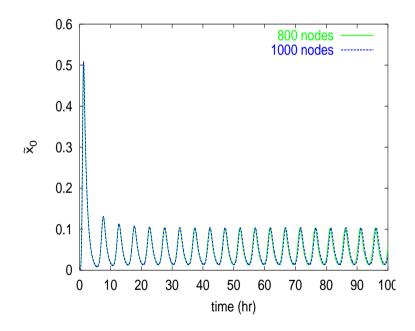
• Mass balance equation:

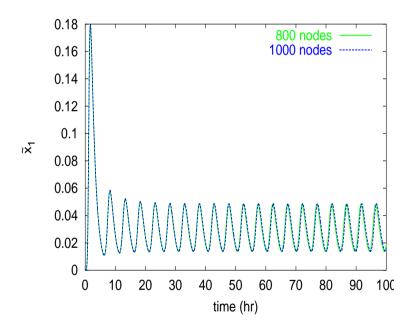
$$\frac{dc}{dt} = \frac{(c_0 - \rho)}{\epsilon \tau} + \frac{(\rho - c)}{\tau} + \frac{(\rho - c)}{\epsilon} \frac{d\epsilon}{dt}$$

$$\epsilon = 1 - \int_0^\infty n(r, t) \frac{4}{3} \pi r^3 dr$$

OPEN-LOOP BEHAVIOR

- Unique unstable steady-state surrounded by limit cycle.
- Open-loop profile of crystal concentration (left) and total crystal size (right) for different number of discretization points.

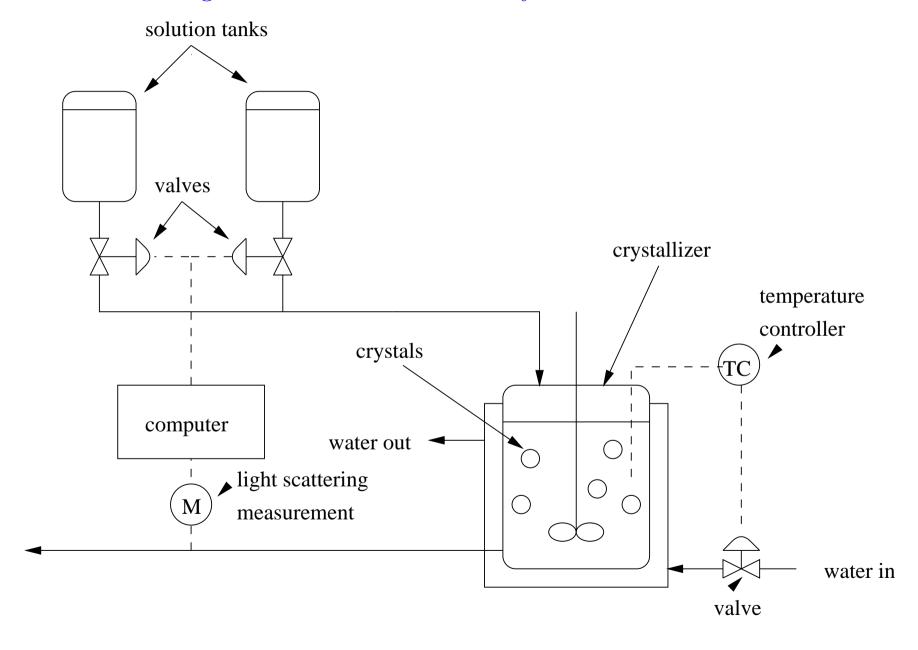




• Feedback control is needed to achieve stabilization.

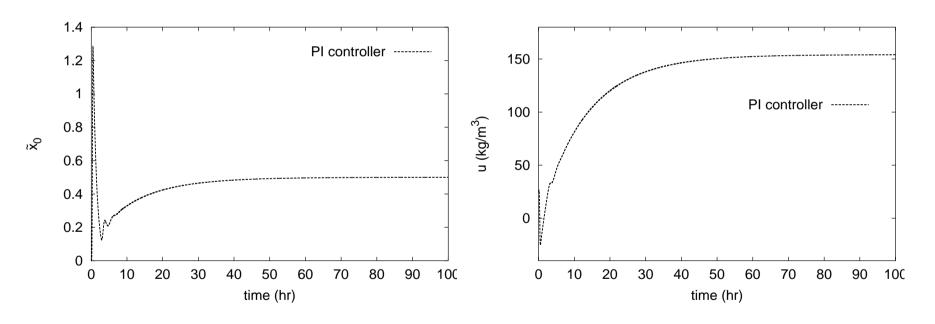
FEEDBACK CONTROL SYSTEM

• Schematic diagram for the continuous crystallizer



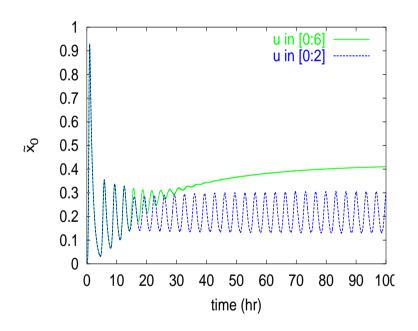
STABILIZATION USING PI CONTROL

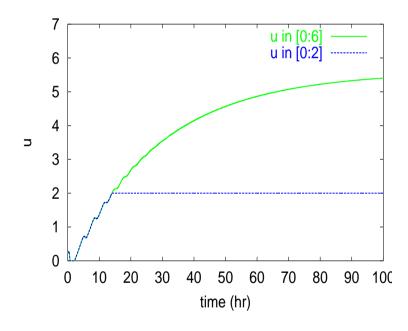
• Closed-loop output (crystal concentration, left figure) and manipulated input (solute concentration, right figure) profiles under PI control, for a 0.5 increase in the set-point (\tilde{x}_0 is the controlled output).



STABILIZATION USING CONSTRAINED PI CONTROL

• Closed-loop output (crystal concentration-left) and manipulated input (solute concentration-right) profiles





• Closed-loop instability owing to input constraints.

PARTICULATE PROCESS MODEL

- Spatially homogeneous process:
 - ♦ Population balance that describes particle size distribution:

$$\frac{\partial \eta}{\partial t} = -\frac{\partial (G(x,r)\eta)}{\partial r} + w(\eta,x,r), \quad \eta(0,t) = b(x(t))$$

♦ Material and energy balances:

$$\dot{x} = f(x) + g(x)u(t) + A \int_0^{r_{max}} a(\eta, r, x) dr$$

♦ Controlled output:

$$y_i(t) = \int_0^{r_{max}} c_i(r)h(\eta(r,t),x)dr$$

 $t \in \mathbb{R}$: time, r: particle size, $\eta \in \mathbb{R}$: particle size distribution.

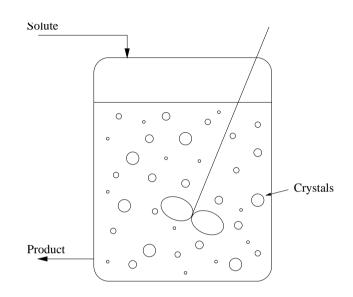
PARTICULATE PROCESS MODEL

• Notation:

- $\diamond x \in \mathbb{R}^n$: vector of continuous-phase variables.
- $\diamond u \in \mathbb{R}^m$: manipulated input vector
- $\diamond y_i \in \mathbb{R}$: controlled output.
- $\diamond \ f(x), g(x), b(x(t)), G(x,r), w(\eta, x, r): \text{nonlinear functions}.$
- \diamond b(x(t)): nucleation rate
- $\diamond G(x,r)$: growth rate.
- $\diamond w(\eta, x, r)$: breakage/agglomeration processes; product removal.
- \diamond $A \int_0^{r_{max}} a(\eta, r, x) dr$: Mass transfer rate to all particles in the population Heat of nucleation/growth.

ISSUES IN PARTICULATE PROCESS CONTROL

- ♦ Population balance is a nonlinear distributed parameter system.
 - ▶ Not directly suited for controller design.
- ♦ Nonlinear behavior:
 - > Arrhenius dependence of reaction rates on temperature.
 - ▷ Complex reaction mechanisms.
- ♦ Model uncertainties:
 - ▶ Unknown process parameters.
 - ▷ Exogenous disturbances.
- ♦ Input and state constraints:
 - ▶ Limited capacity of control actuators.
 - ▷ Operating ranges for process variables (environmental, safety, quality constraints).
- ♦ Limited process state information
 - > Inaccessible states for on-line measurements.



Continuous crystallizer

MODEL REDUCTION OF PBMs

• Population balance model:

$$\frac{\partial \eta}{\partial t} = -\frac{\partial (G(x,r)\eta)}{\partial r} + w(\eta, x, r), \quad \eta(0,t) = b(x(t))$$

$$\dot{x} = f(x) + g(x)u(t) + A \int_0^{r_{max}} a(\eta, r, x) dr$$

- Method of weighted residuals and approximate inertial manifold.
- \diamond Step 1: Expansion of $\eta(r,t)$ in an infinite sum

$$\eta(r,t) = \sum_{k=1}^{\infty} a_k(t)\phi_k(r)$$

 $a_k(t)$: time-varying coefficients, $\phi_k(r)$: global basis functions defined on $r \in [0, r_{max}]$.

- ♦ Step 2: Substituting in the PBM
- \diamond Step 3: Inner product in $L_2[0, r_{max}]$ with weighting functions $\psi_m(r)$; infinite set of ODEs in time:

MODEL REDUCTION OF PBMs

$$\int_0^{r_{max}} \psi_m(r) \sum_{k=1}^\infty \phi_k(r) \frac{\partial a_k(t)}{\partial t} dr = -\sum_{k=1}^\infty a_k(t) \int_0^{r_{max}} \psi_m(r) \frac{\partial (G(x,r)\phi_k(r))}{\partial r} dr$$

$$+ \int_0^{r_{max}} \psi_m(r) w(\sum_{k=1}^\infty a_k(t)\phi_k(r), x, r) dr, \quad \eta(0,t) = b(x(t))$$

$$m = 0, 1, \dots, \infty$$

$$\dot{x} = f(x) + g(x)u(t) + A \int_0^{r_{max}} a(\sum_{k=1}^\infty a_k(t)\phi_k(r), r, x) dr$$

 \diamond Step 4: Truncation of the infinite set of ODEs to derive a finite (n+N) set of ODEs:

$$\dot{\bar{a}}_k = \bar{f}(\bar{a}_k, \bar{x})$$

$$\dot{\bar{x}} = f(\bar{x}) + g(\bar{x})u(t) + A \int_0^{r_{max}} a(\sum_{k=1}^N \bar{a}_k \phi_k(r), r, \bar{x}) dr$$

MODEL REDUCTION OF PBMs

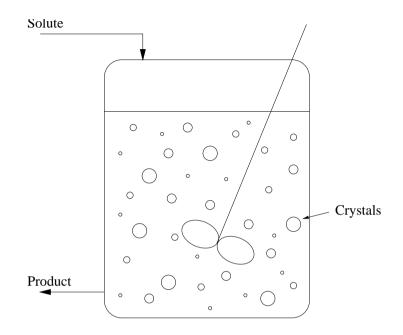
• When $\eta, \frac{\partial \eta}{\partial r}$ are continuous and $u(t) \equiv 0$, then for all $t \in [0, \infty)$:

$$\lim_{N \to \infty} ||\eta(r, t) - \sum_{k=1}^{N} \bar{a}_k(t)\phi_k(r)||_2 = 0$$

• When $\psi_m = r^m$: MWR reduces to the method of moments.

• Use of approximate inertial manifolds is possible.

APPLICATION TO A CONTINUOUS CRYSTALLIZER



• Mathematical model:

$$\frac{\partial n}{\partial \bar{t}} = -\frac{\partial (k_1(c - c_s)n)}{\partial r} - \frac{n}{\tau} + \delta(r - 0)\epsilon k_2 exp(-\frac{k_3}{\left(\frac{c}{c_s} - 1\right)^2})$$

$$\frac{dc}{d\bar{t}} = \frac{(c_0 - \rho)}{\bar{\epsilon}\tau} + \frac{(\rho - c)}{\tau} + \frac{(\rho - c)}{\bar{\epsilon}} \frac{d\bar{\epsilon}}{d\bar{t}}$$

MODEL REDUCTION OF CONTINUOUS CRYSTALLIZER

• Method of moments:

$$m_j = \int_0^\infty r^j n(r,t) dr, \quad j = 0, \dots, \infty$$

• Infinite set of ODEs:

$$\frac{dm_0}{dt} = -\frac{m_0}{\tau} + \left(1 - \frac{4}{3}\pi m_3\right) k_2 e^{-\frac{k_3}{\left(\frac{c}{c_s} - 1\right)^2}}$$

$$\frac{dm_j}{dt} = -\frac{m_j}{\tau} + jk_1(c - c_s)m_{j-1}, \quad j = 1, 2, 3, \dots, \infty$$

$$\frac{dc}{dt} = \frac{c_0 - c - 4\pi\tau(c - c_s)m_2(\rho - c)}{\tau\left(1 - \frac{4}{3}\pi m_3\right)}$$

MODEL REDUCTION OF CONTINUOUS CRYSTALLIZER

• Finite set (1+4) of ODEs:

$$\frac{dm_0}{dt} = -\frac{m_0}{\tau} + \left(1 - \frac{4}{3}\pi m_3\right) k_2 e^{-\frac{k_3}{\left(\frac{c}{c_s} - 1\right)^2}}$$

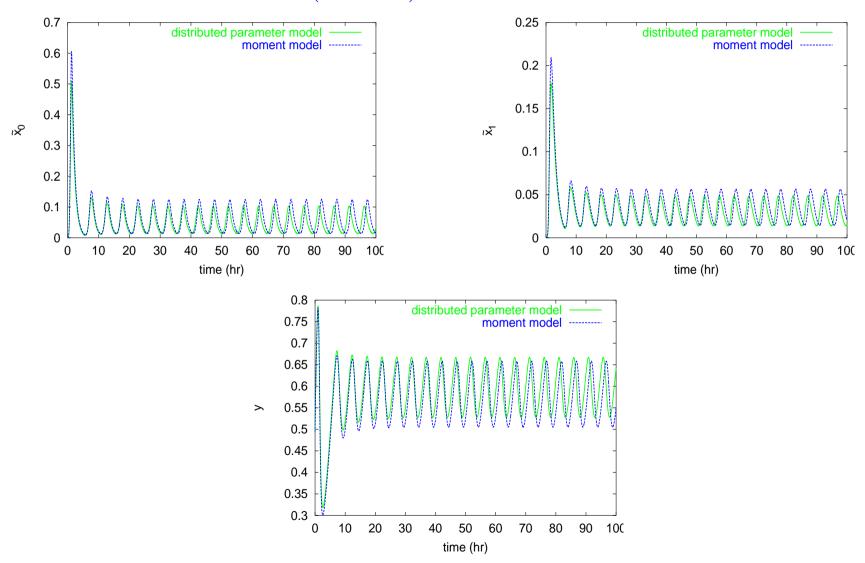
$$\frac{dm_j}{dt} = -\frac{m_j}{\tau} + jk_1(c - c_s)m_{j-1}, \quad j = 1, 2, 3$$

$$\frac{dc}{dt} = \frac{c_0 - c - 4\pi\tau(c - c_s)m_2(\rho - c)}{\tau\left(1 - \frac{4}{3}\pi m_3\right)}$$

• Dominant dynamics are low-dimensional.

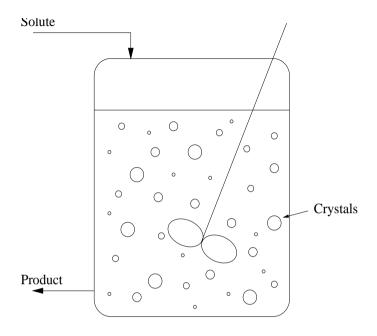
OPEN-LOOP BEHAVIOR PREDICTED BY DISTRIBUTED PARAMETER AND MOMENT MODELS

• Open-loop profiles of crystal concentration (left), total crystal size (right), and solute concentration (bottom).



CONTINUOUS CRYSTALLIZATION

Control problem specification



• Mathematical model:

$$\frac{\partial n}{\partial \bar{t}} = -\frac{\partial (k_1(c-c_s)n)}{\partial r} - \frac{n}{\tau} + \delta(r-0)\epsilon k_2 exp(-\frac{k_3}{\left(\frac{c}{c_s}-1\right)^2})$$

$$\frac{dc}{d\bar{t}} = \frac{(c_0-\rho)}{\bar{\epsilon}\tau} + \frac{(\rho-c)}{\tau} + \frac{(\rho-c)}{\bar{\epsilon}}\frac{d\bar{\epsilon}}{d\bar{t}}$$

• Control problem:
$$u(t) = c_0 - c_{0s}$$
, $y(t) = \int_0^\infty n(r,t)dt$.

GEOMETRIC NONLINEAR CONTROL

$$\frac{dx}{dt} = f(x) + g(x)u$$
$$y = h(x)$$

• Feedback linearization:

♦ Controller synthesis formula

$$u = \frac{1}{L_g L_f^{r-1} h(x)} \left(v - L_f^r h(x) - \sum_{k=1}^r \beta_k L_f^{r-k} h(x) \right)$$

Lie derivative notation: $L_f h(x) = \frac{\partial h}{\partial x} f(x)$.

♦ Input/Output Dynamics

$$\frac{d^r y}{dt} + \beta_1 \frac{d^{r-1} y}{dt} + \dots + \beta_{r-1} \frac{dy}{dt} + \beta_r y = v$$

 β_1, \dots, β_r are tuning parameters (time constants).

• Nonlinear state estimator design:

♦ Nonlinear Luenberger-type state estimator.

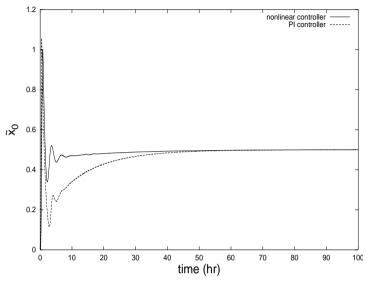
$$\frac{d\eta}{dt} = f(\eta) + g(\eta)u + L(y - h(\eta))$$

 \diamond L: observer gain.

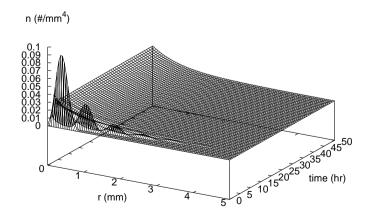
CONTINUOUS CRYSTALLIZATION

Closed-loop simulation results

Closed-loop output profile under nonlinear and PI control.



Closed-loop crystal size distribution under nonlinear control.



ADVANCED MODEL-BASED NONLINEAR CONTROL

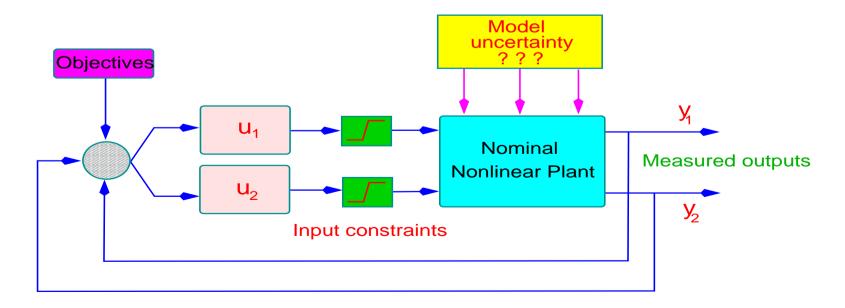
• State space description:

$$\dot{x} = f(x) + \sum_{i=1}^{m} g_i(x)u_i + \sum_{k=1}^{q} w_k(x)\theta_k(t)$$

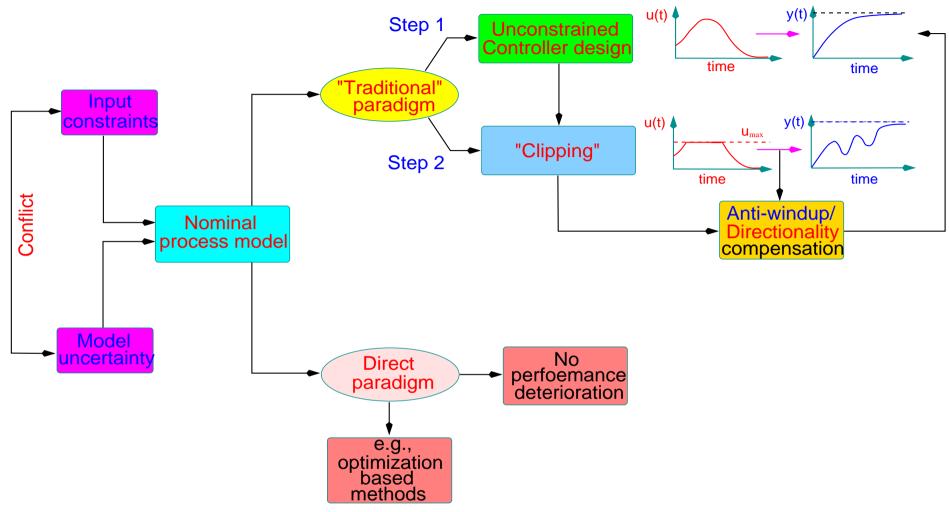
$$y_i = h_i(x), \quad i = 1, \dots, m$$

$$u_{i_{min}} \le u_i \le u_{i_{max}}$$

- $\diamond x \in \mathbb{R}^n$: process states $\diamond u_i \in \mathcal{U} \subset \mathbb{R}$: manipulated inputs
- $\diamond y_i \in \mathbb{R}$: controlled outputs $\diamond \theta_k \in \mathcal{W} \subset \mathbb{R}$: uncertain variables



CONTROL PARADIGMS FOR CONSTRAINED UNCERTAIN NONLINEAR SYSTEMS



- Issues of practical implementation:
 - ♦ Computational complexity
 - ♦ Characterizing closed-loop stability properties
 - ♦ Robustness to constant and time-varying uncertainty

BOUNDED ROBUST OPTIMAL CONTROL

(El-Farra and Christofides, Chem. Eng. Sci., 2001; 2003)

• Basic conceptual tools:

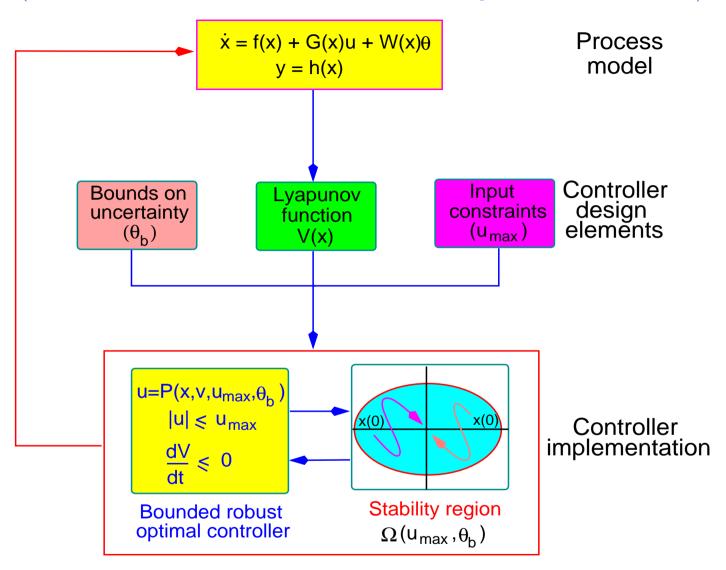
- ♦ Lyapunov theory
- ♦ Bounded control
- ♦ Inverse optimal control theory

• Integrated framework for nonlinear control:

- ♦ Robust stability
 - * Arbitrary degree of attenuation of plant-model mismatch
- Optimality
 - * Avoids wasteful cancellation of process nonlinearities
- ♦ Explicit constraint-handling
 - * Avoids performance deterioration
- ♦ Explicit characterization of stability region
 - * A priori knowledge of feasible initial conditions

BOUNDED ROBUST OPTIMAL CONTROL

(El-Farra and Christofides, Chem. Eng. Sci., 2001; 2003)



- * Multivariable interactions
- * Accessibility of process states for measurement

NONLINEAR CONTROLLER SYNTHESIS

• Constrained low-order ODE system:

$$\dot{\bar{a}}_k = \bar{f}(\bar{a}_k, \bar{x}), \ u \in [u_{min}, u_{max}]$$

$$\dot{\bar{x}} = f(\bar{x}) + g(\bar{x})u(t) + A \int_0^{r_{max}} a(\sum_{k=1}^N \bar{a}_k \phi_k(r), r, \bar{x}) dr$$

- State feedback controller synthesis:
 - ♦ Bounded Lyapunov-based control law

$$u = -\frac{1}{2}R^{-1}(\tilde{x})L_{\bar{g}}V$$

- ♦ Closed-loop properties under active input constraints
 - ▷ Exponential stability / Asymptotic set-point tracking
 - ▶ Optimality
- ♦ Explicit characterization of the region of closed-loop stability.

$$L_{\bar{f}}V \leq u_{max}|L_{\bar{g}}V|$$

OUTPUT FEEDBACK IMPLEMENTATION

- Combination of state feedback with state observer:
 - ♦ State observer: nonlinear Luenberger-type observer.
 - ♦ Nonlinear output feedback controller.

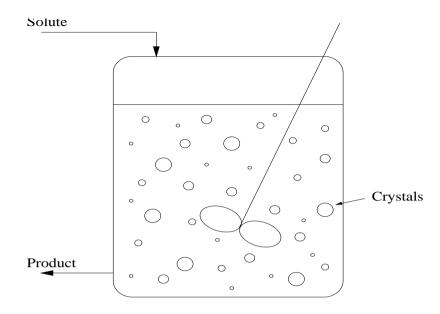
$$\dot{w} = \tilde{f}(\omega) + \tilde{g}(\omega)u + L(y - \tilde{h}(\omega))$$

$$u = -\frac{1}{2}R^{-1}(\omega)L_{\bar{g}}V$$

where ω is the estimate of \tilde{x} .

- Closed-loop stability region practically preserved for large observer gain.
- Exponential stability of constrained closed-loop ODE system implies exponential stability of constrained closed-loop DPS.

APPLICATION TO A CONTINUOUS CRYSTALLIZER



• Process model:

$$\frac{\partial n}{\partial t} = -k_1(c - c_s) \frac{\partial n}{\partial r} - \frac{n}{\tau} + \delta(r - 0)\epsilon k_2 e^{-\frac{k_3}{\left(\frac{c}{c_s} - 1\right)^2}}$$

$$\frac{dc}{dt} = \frac{(c_0 - \rho)}{\epsilon \tau} + \frac{(\rho - c)}{\tau} + \frac{(\rho - c)}{\epsilon} \frac{d\epsilon}{dt}$$

• Control problem:

$$u(t) = c_0, \quad y(t) = \int_0^\infty \eta(r, t) dr$$

COMPUTATION OF ADMISSIBLE SET-POINTS

• Small set of algebraic equations:

$$0 = \bar{f}(\bar{a}_k, \bar{x})$$

$$0 = f(\bar{x}) + g(\bar{x})u(t) + A \int_0^{r_{max}} a(\sum_{k=1}^N \bar{a}_k \phi_k(r), r, \bar{x}) dr,$$

$$u \in U = [u_{min}, u_{max}]$$

• Computation of all equilibrium points for $u \in U$ using approximate model.

$$D = \{(\bar{a}_{ks}, \bar{x}_s), \forall u^0 \in U\}$$

• Computation of admissible set-points.

$$v_i = \int_0^{r_{max}} c_i(r) h(\sum_{k=1}^N \bar{a}_{ks} \phi_k(r), \bar{x}_s) dr$$

• Straightforward computation; approximate set-points for the population balance model.

COMPUTATION OF ADMISSIBLE SET-POINTS

• Steady-state moment model in dimensionless form:

$$0 = -\tilde{x}_{0_s} + (1 - \tilde{x}_{3_s}) Dae^{\frac{-F}{\tilde{y}_s^2}}$$

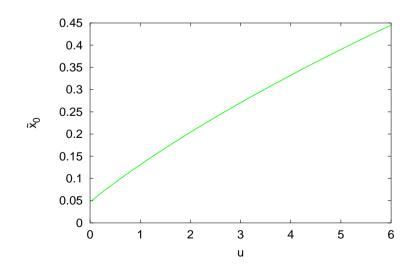
$$0 = -\tilde{x}_{1_s} + \tilde{y}_s \tilde{x}_{0_s}$$

$$0 = -\tilde{x}_{2_s} + \tilde{y}_s \tilde{x}_{1_s}$$

$$0 = -\tilde{x}_{3_s} + \tilde{y}_s \tilde{x}_{2_s}$$

$$0 = \frac{1 - \tilde{y}_s - (\alpha - \tilde{y}_s) \tilde{y}_s \tilde{x}_{2_s}}{1 - \tilde{x}_{3_s}} + \frac{u}{1 - \tilde{x}_{3_s}}$$

• Set of admissible set-points for $u \in [0, 6]$



NONLINEAR CONTROLLER DESIGN

• Model reduction via method of moments:

$$m_j = \int_0^\infty r^j n(r,t) dr, \quad j = 0, \dots, \infty$$

- Finite set (1+4) of ODEs.
- Nonlinear output feedback controller:

$$\frac{d\omega_{0}}{dt} = -\omega_{0} + (1 - \omega_{3})Dae^{\frac{-F}{\omega_{4}^{2}}} + L_{1}(x_{0} - \omega_{0})$$

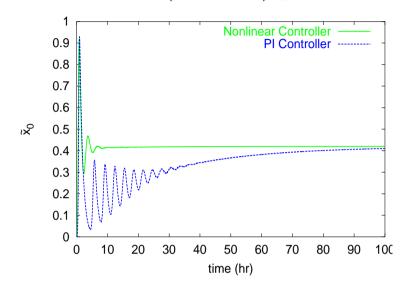
$$\frac{d\omega_{j}}{dt} = -\omega_{j} + \omega_{4}\omega_{j-1}, \quad j = 1, 2, 3$$

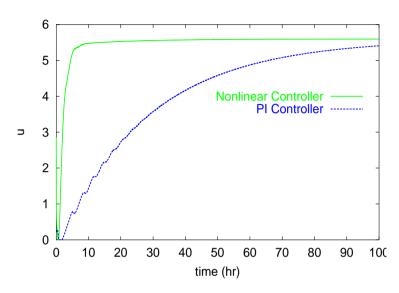
$$\frac{d\omega_{4}}{dt} = \frac{1 - \omega_{4} - (\alpha - \omega_{4})\omega_{4}\omega_{2}}{1 - \omega_{3}} + L_{5}(x_{0} - \omega_{0}) + \frac{u(t)}{1 - \omega_{3}}$$

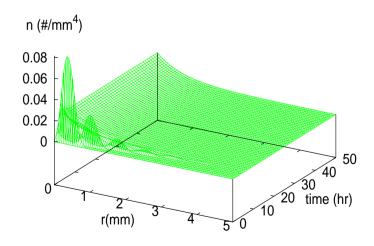
$$u(t) = -\frac{1}{2}R^{-1}(\omega)L_{\bar{g}}V$$

CLOSED-LOOP SIMULATION RESULTS

• Controlled output (left), manipulated input (right) and crystal size distribution (bottom) profiles.

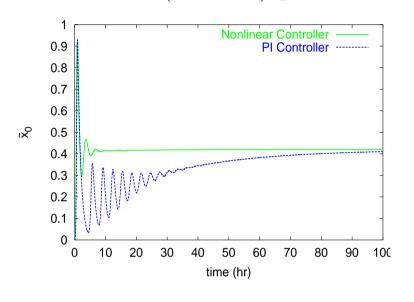


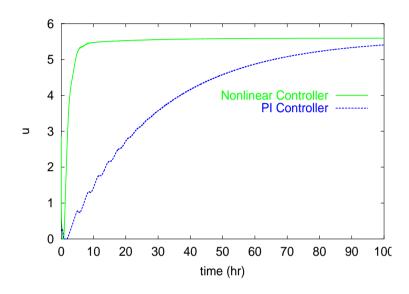


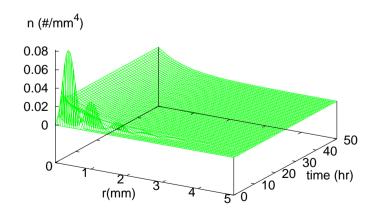


Parametric uncertainty

• Controlled output (left), manipulated input (right) and crystal size distribution (bottom) profiles.

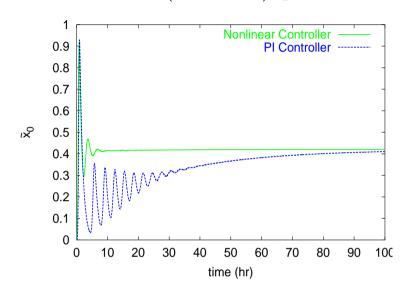


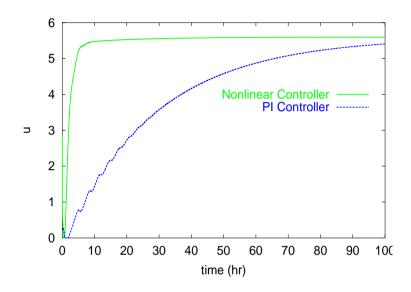


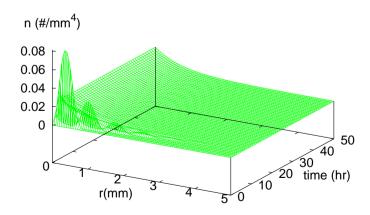


Unmodeled actuator/sensor dynamics

• Controlled output (left), manipulated input (right) and crystal size distribution (bottom) profiles.







NONLINEAR CONTROL THEORY VS. PROCESS CONTROL PRACTICE

- Nonlinear control theory and tools:
 - ♦ Require thorough understanding of the process ('sufficiently' accurate process models).
 - ♦ Geometric control, Lyapunov-based control, feedback linearization, etc.
 - Allow rigorous analysis of closed—loop stability and performance properties.
- Process control practice:
 - ⋄ Proportional Integral Derivative (PID) controllers, Linear Model Predictive Control (MPC).
 - ♦ Do not account for the complex dynamics of the process.
- Nonlinear control implementation requires **redesign** of control hardware:

Use nonlinear control theory to aid process control practice

NONLINEAR SYSTEMS WITH INPUT CONSTRAINTS

• State—space description:

$$\dot{x}(t) = f(x(t)) + g(x)u(t)$$
 $u(t) \in \mathcal{U}$

- $\diamond x(t) \in \mathbb{R}^n$: state vector $\diamond u(t) \in \mathcal{U} \subset \mathbb{R}^m$: control input
- $\diamond \mathcal{U} \subset \mathbb{R}^m$: compact & convex $\diamond u = 0 \in \text{interior of } \mathcal{U}$
 - \diamond (0, 0) an equilibrium point

• Stabilization of origin under constraints

MODEL PREDICTIVE CONTROL

- Control problem formulation
 - ♦ Finite-horizon optimal control:

$$P(x,t) : \min\{J(x,t,u(\cdot))|\ u(\cdot)\in U_{\Delta}\}$$

♦ Performance index:

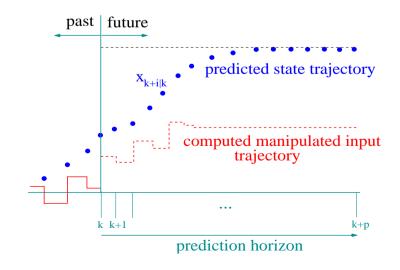
$$J(x,t,u(\cdot)) = F(x(t+T)) + \int_{t}^{t+T} \left[\|x^{u}(s;x,t)\|_{Q}^{2} + \|u(s)\|_{R}^{2} \right] ds$$

- $\triangleright \|\cdot\|_Q$: weighted norm
- $\triangleright T$: horizon length
- ♦ Implicit feedback law

$$M(x) = u^0(t; x, t)$$

"repeated on-line optimization"

- $\triangleright Q, R > 0$: penalty weights
- $\triangleright F(\cdot)$: terminal penalty



MODEL PREDICTIVE CONTROL

• Formulations for closed-loop stability:

(Mayne et al, Automatica, 2000)

- ♦ Adjusting horizon length, terminal penalty, weights, etc.
- ♦ Imposing stability constraints on optimization:
 - \triangleright Terminal equality constraints: x(t+T) = 0

• Issues of practical implementation:

- ♦ Optimization problem non-convex
 - ▷ Possibility of multiple, local optima
 - ▶ Optimization problem hard to solve (e.g., algorithm failure)
 - ▶ Difficult to obtain solution within "reasonable" time
- ♦ Lack of explicit characterization of stability region
 - ▷ Extensive closed-loop simulations
 - ▶ Restrict implementation to small neighborhoods

LYAPUNOV-BASED CONTROL

• Explicit nonlinear control law:

$$u_{\sigma} = -k(x, u_{max})(L_{g_{\sigma}}V)^{T}$$

- ♦ Example: bounded controller (Lin & Sontag, 1991)
 - ▶ Controller design accounts for constraints.
- Explicit characterization of stability region:

$$\Omega_{\sigma}(u_{max}) = \{x \in \mathbb{R}^n : V_{\sigma}(x) \le c_{\sigma}^{max} \& \dot{V}_{\sigma}(x) < 0\}$$

♦ Larger estimates using a combination of several Lyapunov functions

UNITING BOUNDED CONTROL AND MPC

(El-Farra, Mhaskar & Christofides, Automatica, 2004; IJRNC, 2004)

• Objectives:

- ♦ Development of a framework for merging the two approaches:
 - ▶ Reconcile tradeoffs in stability and optimality properties
 - ▶ Explicit characterization of constrained stability region
 - ▶ Possibility of improved performance
 - ▶ Implement computationally inexpensive MPC formulations

• Central idea:

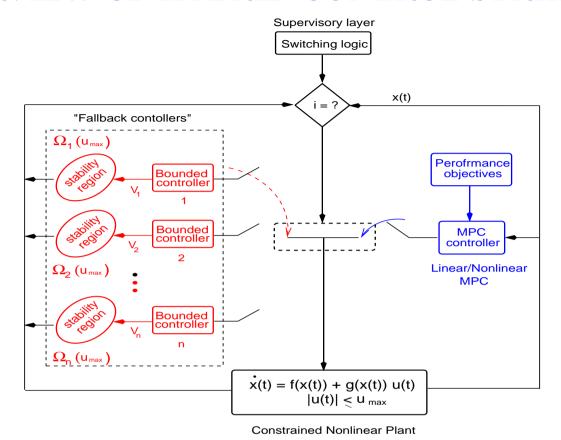
Decoupling "optimality" & "constrained stabilizability"

- ♦ Stability region provided by bounded controller
- ♦ Optimal performance supplied by MPC controller

• Approach:

♦ Switching between MPC & a family of bounded controllers

OVERVIEW OF HYBRID CONTROL STRATEGY



• Hierarchical control structure

- ♦ Plant level
- \diamond Control level
- ♦ Supervisory level
- Overall structure independent of specific MPC algorithm used
 - ♦ Could use linear/nonlinear MPC with or without stability constraints

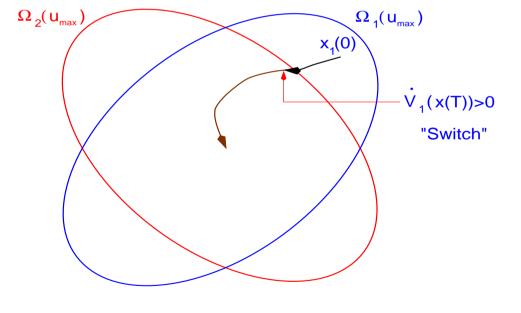
STABILITY-BASED CONTROLLER SWITCHING

• Switching logic:

$$u_{\sigma}(x(t)) = \begin{cases} M(x(t)), & 0 \le t < T^* \\ b(x(t)), & t \ge T^* \end{cases}$$

$$L_f V_k(x) + L_g V_k(x) M(x(T^*)) \ge 0$$

- \diamond Initially implement MPC, $x(0) \in \Omega_k(u_{max})$
- \diamond Monitor temporal evolution of $V_k(x^M(t))$
- \diamond Switch to bounded controller only if $V_k(x^M(t))$ starts to increase



IMPLICATIONS OF SWITCHING SCHEME

- Switched closed-loop inherits bounded controller's stability region
 - \diamond A priori guarantees for all $x(0) \in \Omega(u_{max})$
- Lyapunov stability condition checked & enforced by "supervisor"
 - ♦ Reduce computational complexity of optimization
 - \diamond Scheme does not require stability of MPC within $\Omega(u_{max})$
 - ♦ Provides a safety net for implementing MPC
 - ♦ Stability independent of horizon length
- Conceptual differences from other schemes:
 - ♦ Switching does not occur locally
 - Provides stability region explicitly
 - \diamond No switching occurs if $V(x^M(t))$ decays continuously
 - ▷ Only MPC is implemented ⇒ optimal performance recovered

PREDICTIVE CONTROL IN INDUSTRIAL PRACTICE

- A "typical" predictive control design:
 - ♦ Nonlinear process model:

$$\dot{x} = f(x) + g(x)u$$

$$u_{min}^{i} \le u_{i} \le u_{max}^{i}$$

♦ Linear representation:

$$\dot{x} = Ax + Bu$$

$$u_{min}^{i} \le u_{i} \le u_{max}^{i}$$

- * Linearization (around desired steady-state) (e.g., through step tests)
- * Model identification
- ♦ Use of computationally efficient linear MPC (QP) algorithms
- ♦ No closed-loop stability guarantees for nonlinear system
- Practical value of the hybrid control structure:
 - ♦ Provides stability guarantees through fall-back controllers
 - Entails no modifications in existing predictive controller design

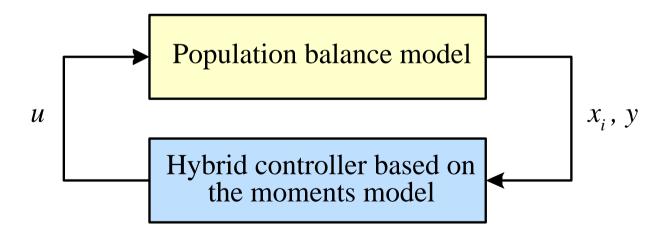
APPLICATION TO A CONTINUOUS CRYSTALLIZER

• Population balance model:

$$\frac{\partial n}{\partial t} = -k_1(c - c_s) \frac{\partial n}{\partial r} - \frac{n}{\tau} + \delta(r - 0)\epsilon k_2 e^{-\frac{k_3}{\left(\frac{c}{c_s} - 1\right)^2}}$$

$$\frac{dc}{dt} = \frac{(c_0 - \rho)}{\epsilon \tau} + \frac{(\rho - c)}{\tau} + \frac{(\rho - c)}{\epsilon} \frac{d\epsilon}{dt}$$

• Hybrid control loop structure:



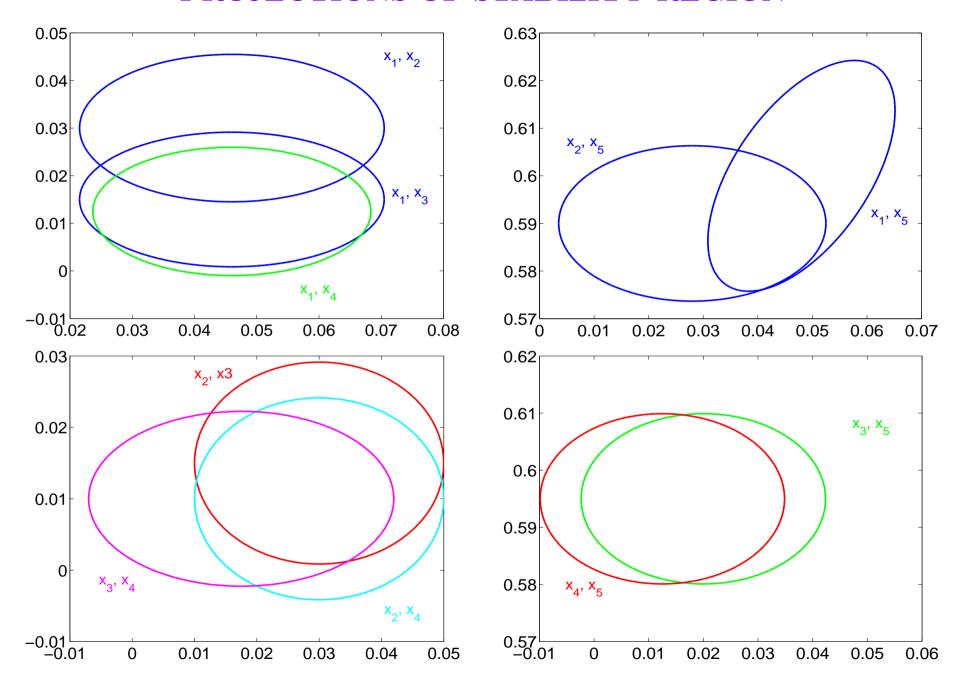
APPLICATION TO A CONTINUOUS CRYSTALLIZER

• Crystallizer moments model:

$$\dot{x}_{0} = -x_{0} + (1 - x_{3})Da \exp\left(\frac{-F}{y^{2}}\right)
\dot{x}_{1} = -x_{1} + yx_{0}
\dot{x}_{2} = -x_{2} + yx_{1}
\dot{x}_{3} = -x_{3} + yx_{2}
\dot{y} = \frac{1 - y - (\alpha - y)yx_{2}}{1 - x_{3}} + \frac{u}{1 - x_{3}}$$

- ♦ Unstable equilibrium point surrounded by stable limit cycle.
- ♦ Control objective:
 - > Stabilization at unstable equilibrium point.
 - \triangleright Input constraints: $u \in [-1, 1]$.
- Bounded controller: designed using normal form.
- Predictive controller: linear prediction model with stability constraints.

PROJECTIONS OF STABILITY REGION



APPLICATION TO A CONTINUOUS CRYSTALLIZER

Hybrid Controller Design

• State—space description:

$$\dot{x}_{0} = -x_{0} + (1 - x_{3})Dae^{\frac{-F}{y^{2}}}$$

$$\dot{x}_{1} = -x_{1} + yx_{0}$$

$$\dot{x}_{2} = -x_{2} + yx_{1}$$

$$\dot{x}_{3} = -x_{3} + yx_{2}$$

$$\dot{y} = \frac{1 - y - (\alpha - y)yx_{2}}{1 - x_{3}} + \frac{u}{1 - x_{3}}$$

- ♦ Unstable equilibrium point surrounded by limit cycle
- \diamond Input constraints: $u \in [-1, 1]$

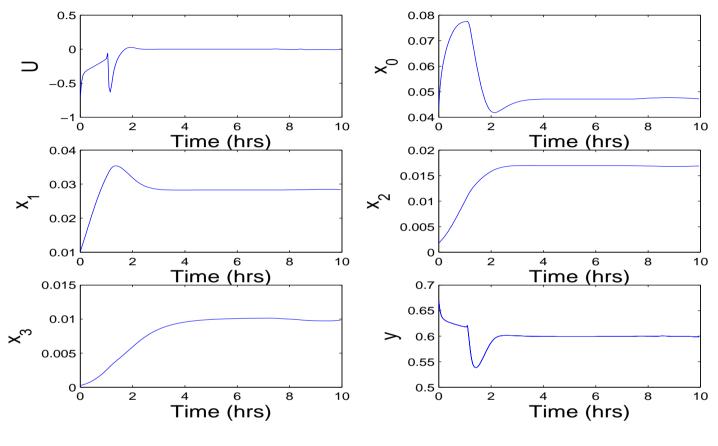
• Bounded controller:

♦ Normal form representation:

$$\dot{\xi} = A\xi + bl(\xi, \eta) + b\alpha(\xi, \eta)u$$

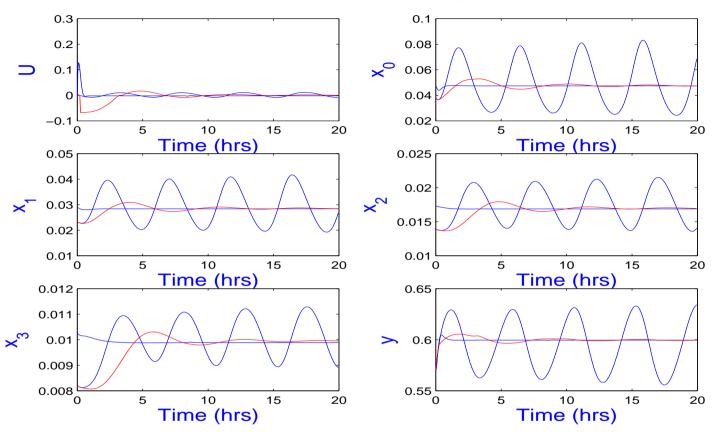
$$\dot{\eta} = \Psi(\xi, \eta)$$

"Stability-based switching"



♦ Input & state profiles

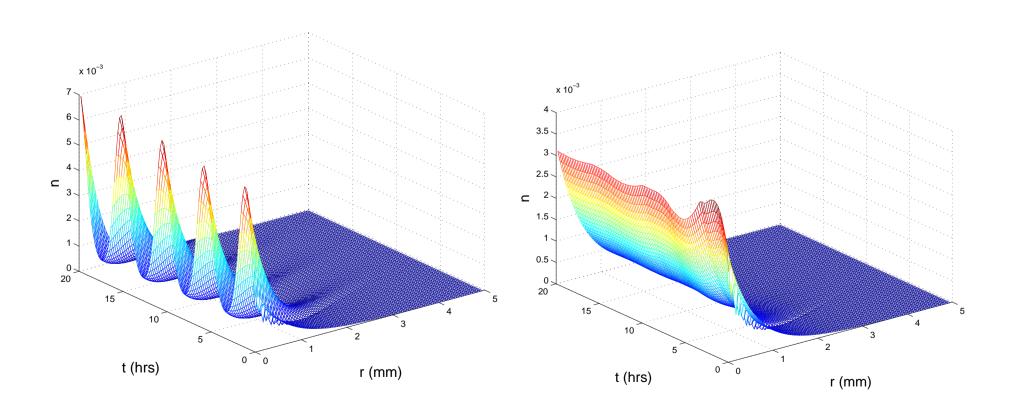
- \diamond MPC with T=0.25, switching (t=1), J=3.4259



- $\diamond x_1(0)$: MPC with T = 0.25 feasible
- $\diamond x_2(0)$: MPC with T = 0.25 (no terminal constraints)
- $\diamond x_2(0)$: switching to bounded controller

Evolution of Crystal Size Distribution

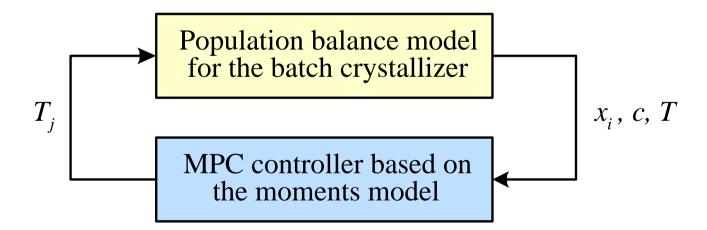
- Closed loop simulation results of MPC with T = 0.25 (no terminal constraints)(left figure).
- Closed loop simulation results of Bounded controller(right figure).



• Population balance model:

$$\frac{\partial n}{\partial t} = -G(t)\frac{\partial n}{\partial r}
\frac{dc}{dt} = -3\rho k_v G(t)x_2
\frac{dT}{dt} = -\frac{UA}{MC_p}(T - T_j) - 3\frac{\Delta H}{C_p}\rho k_v G(t)x_2$$

• Model predictive control loop structure:



• Batch crystallizer moments model:

$$\dot{x_0} = B(t)$$
 $\dot{x_1} = G(t)x_0$
 $\dot{x_2} = 2G(t)x_1$
 $\dot{x_3} = 3G(t)x_2$
 $\dot{c} = -3\rho k_v G(t)x_2$
 $\dot{T} = -\frac{UA}{MC_p}(T - T_j) - 3\frac{\Delta H}{C_p}\rho k_v G(t)x_2$

- Manipulated variables
 - ♦ Solute concentration
- ♦ Heating/Cooling
- Measured output variables
 - ♦ Solute concentration

- ♦ Crystal size distribution
- Controlled output variables
 - ♦ Shaping crystal size distribution

• Optimization problem:

$$\max \frac{x_3}{x_0}$$

$$s.t. T_{jmin} \le T_j \le T_{jmax}$$

$$c_s \le c \le c_m$$

 x_3 : the third-order moment of the moments model,

total volume of crystals.

 x_0 : the zero-order moment of the moments model,

total number of crystals.

 T_{imin} : the lower bound of the jacket temperature.

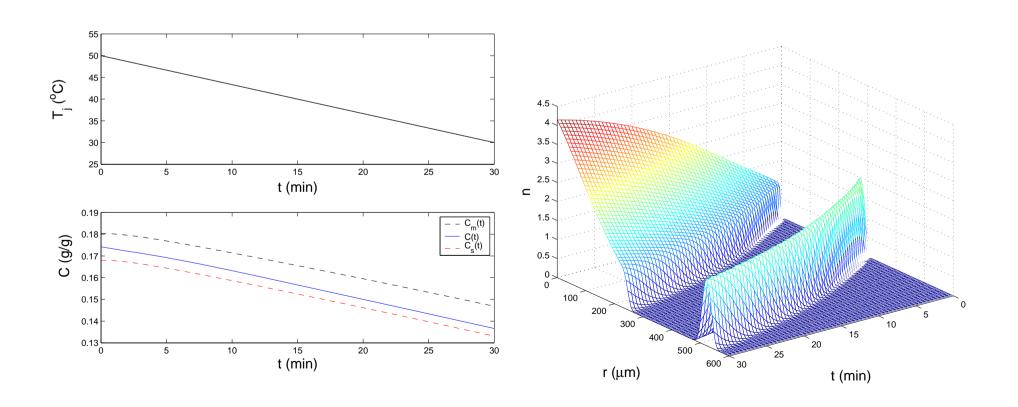
 T_{jmax} : the upper bound of the jacket temperature.

 c_s : the saturation concentration at certain reactor temperature.

 c_m : the metastable concentration at certain reactor temperature.

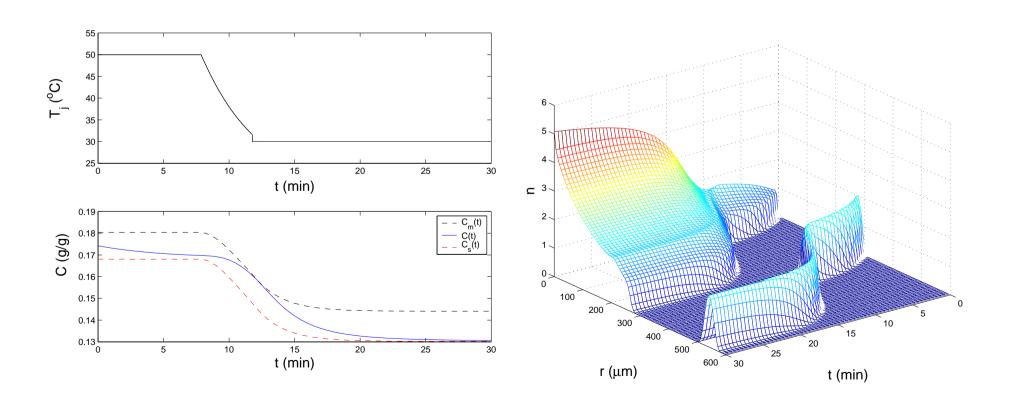
Open Loop Simulation Results

- Open loop simulation results with linear cooling strategy. Results include the evolution of crystal size distribution(right figure), and the trajectories of the jacket temperature and the reactor concentration(left figure).
- Average crystal volume of the final product is $6.84 \times 10^7 \mu m^3$.



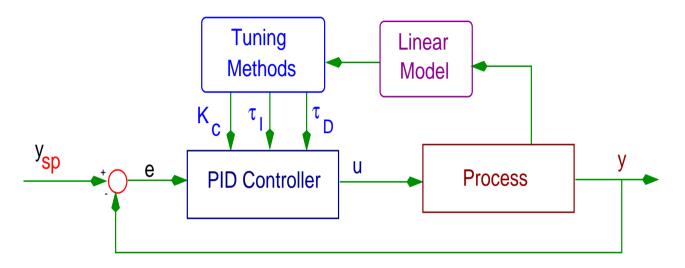
Closed Loop Simulation Results

- Closed loop simulation results with MPC. Results include the evolution of crystal size distribution(right figure), and the trajectories of the jacket temperature and the reactor concentration(left figure).
- Average crystal volume of the final product is $7.58 \times 10^7 \mu m^3$.



TUNING CLASSICAL CONTROLLERS USING NONLINEAR CONTROL THEORY: PROCESS CONTROL PRACTICE

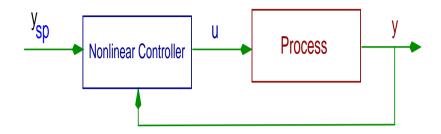
• Proportional Integral Derivative (PID) controllers:



- "Easy" to use and implement:
 - ♦ Tuning rules based on linear process models.
- Do not account for
 - ♦ Process nonlinearities, uncertainties, constraints etc.
- Extensive retuning/poor performance.

TUNING CLASSICAL CONTROLLERS USING NONLINEAR CONTROL THEORY: NONLINEAR CONTROL THEORY

• Nonlinear controllers:



- ♦ Handle process uncertainties/time delays/state estimation/...
- ♦ Provide rigorous results and analysis.
- ♦ Require better understanding of the process (detailed models).
- ♦ Implementation requires redesign of existing control hardware.

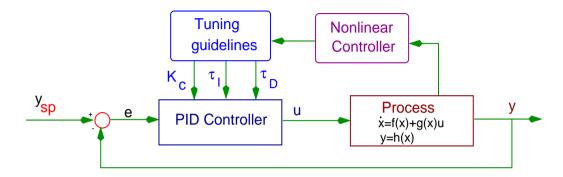
• Gap between

- ▶ Nonlinear control theory tools.
- \triangleright Process control practice (K_c, τ_i, τ_d) .

Use/develop nonlinear control tools for PID controller tuning

TUNING GUIDELINES

• Tuning framework



- ♦ Design a nonlinear controller that accounts for the complex process dynamics.
- ♦ Compute, but not implement, the control action as prescribed by the nonlinear controller.
- ♦ Set up and solve an optimization problem:
 - ➤ The objective function 'measures' the difference between the control action of the PID and the nonlinear controller.
 - ▶ The decision variables are the PID controller parameters.

ESTIMATION AND CONTROL OF SIZE DISTRIBUTION IN AEROSOL PROCESSES

- Aerosol processes are widely used for the production of ceramic powders, such as, TiO_2 , SiO_2 and other nano-/micron-sized particles.
- Mechanism of production and growth:

Birth of monomers by gas-phase chemical reaction

Nucleation of aerosol particles

 \Downarrow coagulation

Nano-/micron- sized particles

- Population balances models (PBMs): Natural modeling framework.
 - ♦ Main features: nonlinear and distributed nature.

AEROSOL PROCESS MODEL

Particulate phase

• Population balance equation:

$$\frac{\partial n}{\partial t} + \frac{\partial (G(\bar{x}, v)n)}{\partial v} - I(v^*)\delta(v - v^*)$$

$$=\frac{1}{2}\int_0^v \beta(v-\bar{v},\bar{v},\bar{x})n(v-\bar{v},t)n(\bar{v},t)d\bar{v}$$

$$-n(v,t)\int_0^\infty \beta(v,\bar{v},\bar{x})n(\bar{v},t)d\bar{v}$$

n(v,t) : aerosol size distribution function

t: time

v : particle volume

 $G(\bar{x}, v)$: growth function

 $I(v^*)$: nucleation rate

 $\beta(v-\bar{v},\bar{v},\bar{x})$: coagulation coefficient

AEROSOL PROCESS MODEL Continuous phase

Mass and energy balances:

$$\frac{d\bar{x}}{dt} = +\bar{f}(\bar{x}) + \bar{g}(\bar{x})u(t) + \tilde{A}\int_0^\infty a(\eta, v, x)dv$$

 $\bar{x}(t)$ *n*-dimensional vector of continuous phase variables (e.g., temperature, concentrations)

 $ar{f}(ar{x}), ar{g}(ar{x}), a(\eta, v, x)$: nonlinear vector functions

 $ar{A}, ilde{A}$: constant matrices $ilde{A} \int_0^\infty a(\eta,v,ar{x}) dv \qquad : ext{mass/heat transfer from the continuous to}$ the particle phase

u(t)manipulated variable

System of nonlinear first-order ordinary differential equations.

METHODOLOGICAL FRAMEWORK FOR ESTIMATION AND CONTROL

• Aerosol process model.

$$\begin{split} \frac{\partial n}{\partial t} + \frac{\partial (G(\bar{x}, v)n)}{\partial v} - I(v^*)\delta(v - v^*) \\ = \frac{1}{2} \int_0^v \beta(v - \bar{v}, \bar{v}, \bar{x}) n(v - \bar{v}, t) n(\bar{v}, t) d\bar{v} - n(v, t) \int_0^\infty \beta(v, \bar{v}, \bar{x}) n(\bar{v}, t) d\bar{v} \\ \frac{d\bar{x}}{dt} &= \bar{f}(\bar{x}) + \bar{g}(\bar{x}) u(t) + \tilde{A} \int_0^\infty a(\eta, v, \bar{x}) dv \end{split}$$

- Methodology for estimation and controller design.
 - ♦ Nonlinear model reduction of population balance equations.
 - ▶ Lognormal aerosol size distribution.
 - ▶ Method of moments.
 - ♦ Nonlinear output feedback controller design.
 - ♦ Validation through implementation on the sectional model.

LOGNORMAL AEROSOL SIZE DISTRIBUTION

• Many aerosol size distributions can be adequately modeled by lognormal functions (Pratsinis, JCIS, 1988).

$$n(v,t) = \frac{1}{3\sqrt{2\pi}ln\sigma}exp\left(-\frac{ln^2(v/v_g)}{18ln^2\sigma}\right)\frac{1}{v}$$

 v_q : geometric average particle volume

$$v_g = \frac{M_1^2}{M_0^{\frac{3}{2}} M_2^{\frac{1}{2}}}$$

 σ : standard deviation

$$ln^2\sigma = \frac{1}{9}ln\left(\frac{M_0M_2}{M_1^2}\right)$$

 M_0 , M_1 and M_2 are the three leading volume weighted moments, and:

$$M_k(t) = \int_0^\infty v^k n(v,t) dv = M_0 v_g^k exp\left(\frac{9}{2}k^2 ln^2\sigma\right)$$

• Lognormal aerosols can be adequately described by moment models.

DERIVATION OF MOMENT MODEL

$$\frac{\partial n}{\partial t} + \frac{\partial (G(\bar{x}, v)n)}{\partial v} - I(v^*)\delta(v - v^*)$$

$$=\frac{1}{2}\int_0^v \beta(v-\bar{v},\bar{v},\bar{x})n(v-\bar{v},t)n(\bar{v},t)d\bar{v}$$

$$-n(v,t)\int_0^\infty \beta(v,\bar{v},\bar{x})n(\bar{v},t)d\bar{v}$$

- Multiplication with v^k and integration over all particle size.
- Approximation of n(v, t) by a lognormal function.
- Aerosol dynamics over the entire particle spectrum is described by using harmonic means of dimensionless coefficients in free-molecular and continuum regions.

MOMENT MODEL

• Zeroth moment (aerosol concentration):

$$\frac{dN}{d\theta} = I' - \xi N^2$$

• First moment (aerosol volume):

$$\frac{dV}{d\theta} = I'k^* + \eta(S-1)N$$

• Second moment:

$$\frac{dV_2}{d\theta} = I'k^{*2} + 2\epsilon(S-1)V + 2\zeta V^2$$

 ξ, ζ : dimensionless coagulation coefficients

$$\frac{1}{\xi} = \frac{1}{\xi_{FM}} + \frac{1}{\xi_C}, \quad \frac{1}{\zeta} = \frac{1}{\zeta_{FM}} + \frac{1}{\zeta_C}$$

 ϵ, η : dimensionless condensation coefficients

$$\frac{1}{\epsilon} = \frac{1}{\epsilon_{FM}} + \frac{1}{\epsilon_C} \quad , \quad \frac{1}{\eta} = \frac{1}{\eta_{FM}} + \frac{1}{\eta_C}$$

MODEL USED FOR ESTIMATOR AND CONTROLLER DESIGN

• Moment model:

$$\frac{dN}{d\theta} = I' - \xi N^2$$

$$\frac{dV}{d\theta} = I'k^* + \eta(S-1)N$$

$$\frac{dV_2}{d\theta} = I'k^{*2} + 2\epsilon(S-1)V + 2\zeta V^2$$

• Material and energy balances (continuous phase):

$$\frac{d\bar{x}}{dt} = \bar{f}(\bar{x}) + \bar{g}(\bar{x})u(t) + \tilde{A}\int_0^\infty a(\eta, v, \bar{x})dv$$

• Introducing $x = [N \ V \ V_2 \ \bar{x}]^T$:

$$\frac{dx}{dt} = f(x) + g(x)u$$
$$y = h(x)$$

y: controlled output variable.

NONLINEAR ESTIMATOR / CONTROLLER DESIGN

$$\frac{dx}{dt} = f(x) + g(x)u$$
$$y = h(x)$$

• Feedback linearization:

♦ Controller synthesis formula

$$u = \frac{1}{L_g L_f^{r-1} h(x)} \left(v - L_f^r h(x) - \sum_{k=1}^r \beta_k L_f^{r-k} h(x) \right)$$

Lie derivative notation: $L_f h(x) = \frac{\partial h}{\partial x} f(x)$.

♦ Input/Output Dynamics

$$\frac{d^r y}{dt} + \beta_1 \frac{d^{r-1} y}{dt} + \dots + \beta_{r-1} \frac{dy}{dt} + \beta_r y = v$$

 β_1, \dots, β_r are tuning parameters (time constants).

• Nonlinear state estimator design:

♦ Nonlinear Luenberger-type state estimator.

$$\frac{d\eta}{dt} = f(\eta) + g(\eta)u + L(y - h(\eta))$$

 \diamond L: observer gain.

APPLICATION TO A BATCH AEROSOL REACTOR

- Batch aerosol reactor: $A + B \rightarrow C$.
- Chemical reaction, nucleation, condensation and coagulation.
- Sectional model:

$$\frac{dN_1}{dt} = I(v^*)\theta(v_0 < v^* < v_1) - \frac{1}{2}{}^3\bar{\beta}_{1,1}N_1^2 - N_1\sum_{i=2}^m {}^4\bar{\beta}_{i,1}N_i - \xi_1N_1,$$

$$\frac{dN_l}{dt} = I(v^*)\theta(v_{l-1} < v^* < v_l) + \frac{1}{2}\sum_{i=1}^{l-1}\sum_{j=1}^{l-1}\bar{\beta}_{i,j,l}N_iN_j$$

$$-N_l\sum_{i=1}^{l-1}{}^2\bar{\beta}_{i,l}N_i - \frac{1}{2}{}^3\bar{\beta}_{l,l}N_l^2$$

$$-N_l\sum_{i=l+1}^{m}{}^4\bar{\beta}_{i,l}N_i + \xi_{l-1}N_{l-1} - \xi_lN_l,$$

APPLICATION TO A BATCH AEROSOL REACTOR

• Sectional model(cont.):

$$\frac{dN_m}{dt} = I(v^*)\theta(v_{m-1} < v^* < v_m) + \frac{1}{2} \sum_{i=1}^{m-1} \sum_{j=1}^{m-1} \bar{\beta}_{i,j,m} N_i N_j
-N_l \sum_{i=1}^{m-1} \bar{\beta}_{i,m} N_i
-\frac{1}{2} \bar{\beta}_{m,m} N_m^2 + \xi_{m-1} N_{m-1}
\frac{dn_0}{dt} = k_r C_1 C_2 N_{av} - Ik^* - omega \sum_{l=1}^{m} \frac{N_l}{(v_l - v_{l-1})} \int_{v_{l-1}}^{v_l} v^{\frac{1}{3}} \frac{1 + Kn}{1 + 1.71Kn + 1.333Kn^2} dv
\frac{dC_1}{dt} = -k_r C_1 C_2
\frac{dC_2}{dt} = -k_r C_1 C_2
\frac{dC_2}{dt} = (k_r C_1 C_2 \Delta H_r + 4UD_T^{-1} (T_w - T)) C_{pv}^{-1}$$

MOMENT MODEL / CONTROL PROBLEM

• Moment model.

$$\frac{dN}{dt} = I' - \xi N^2$$

$$\frac{dV}{dt} = I'k^* + \eta(S-1)N$$

$$\frac{dV_2}{dt} = I'k^{*2} + 2\epsilon(S-1)V + 2\zeta V^2$$

$$\frac{dS}{dt} = C\bar{C}_1\bar{C}_2 - I'k^* - \eta(S-1)N$$

$$\frac{d\bar{C}_1}{dt} = -A_1\bar{C}_1\bar{C}_2$$

$$\frac{d\bar{C}_2}{dt} = -A_2\bar{C}_1\bar{C}_2$$

$$\frac{d\bar{T}}{dt} = B\bar{C}_1\bar{C}_2\bar{T} + E\bar{T}(\bar{T}_w - \bar{T})$$

- Control problem
 - \diamond Controlled output: v_q at the end of the batch.
 - \diamond Manipulated input: T_w .

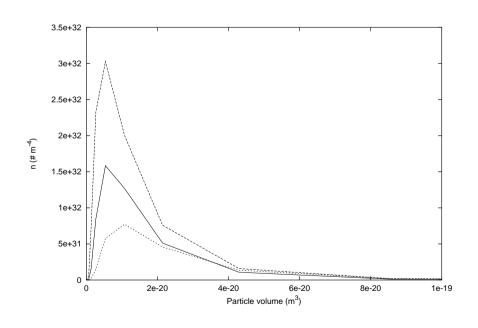
ESTIMATION AND CONTROL OF SIZE DISTRIBUTION IN AEROSOL PROCESSES

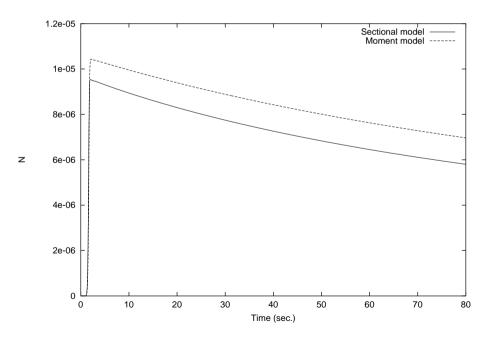
(Kalani and Christofides, AIChE J., 2002)

- Spatially homogeneous aerosol processes described by population balances.
- General framework for nonlinear state estimation and feedback control.
 - ♦ Sectional and moment approximations.
 - ♦ Estimator and controller design based on the moment models.
 - ♦ Validation through implementation on the sectional model.
- Application to an aerosol process with nucleation, condensation and coagulation.

OPEN-LOOP SIMULATION RESULTS

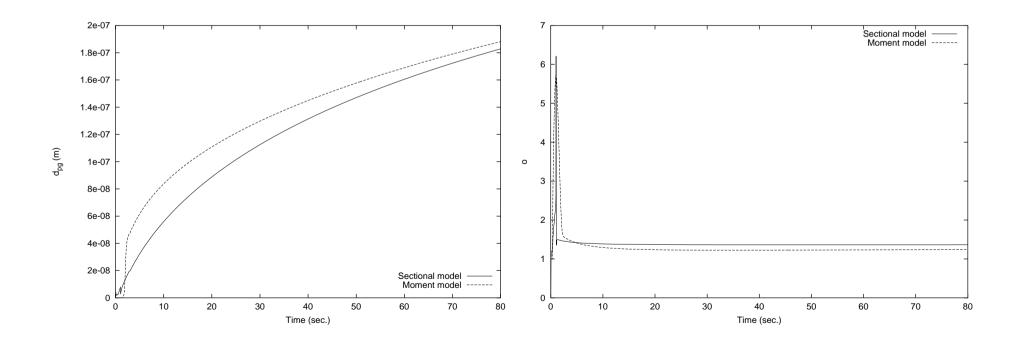
- Profiles of N computed by the sectional (solid line) and moment (dashed line) models(left figure).
- Profiles of aerosol size distribution function at $t = 80 \ sec(\text{right figure})$.





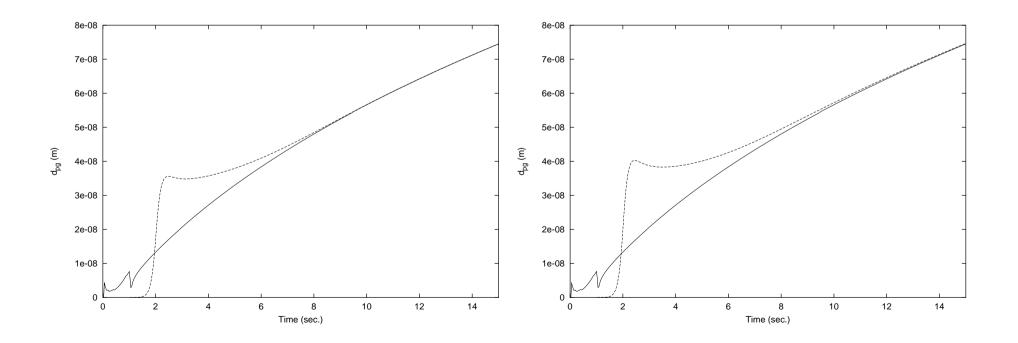
OPEN-LOOP SIMULATION RESULTS

- Profiles of d_{pg} computed by the sectional (solid line) and moment (dashed line) models(left figure).
- Profiles of σ computed by the sectional (solid line) and moment (dashed line) models(right figure).

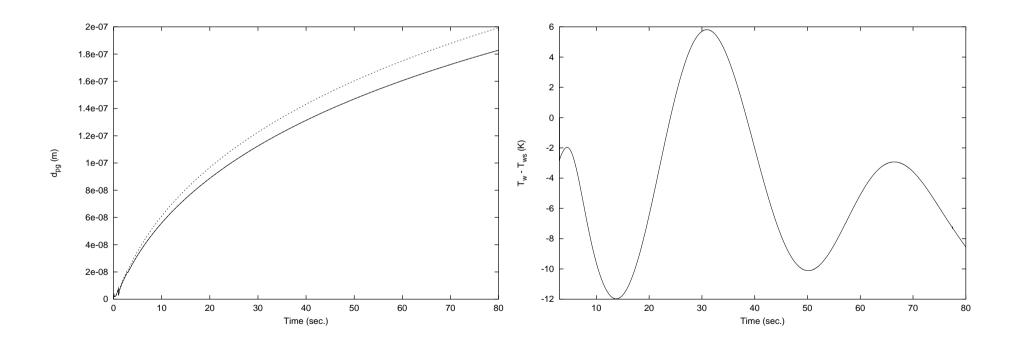


OPEN-LOOP STATE ESTIMATION RESULTS

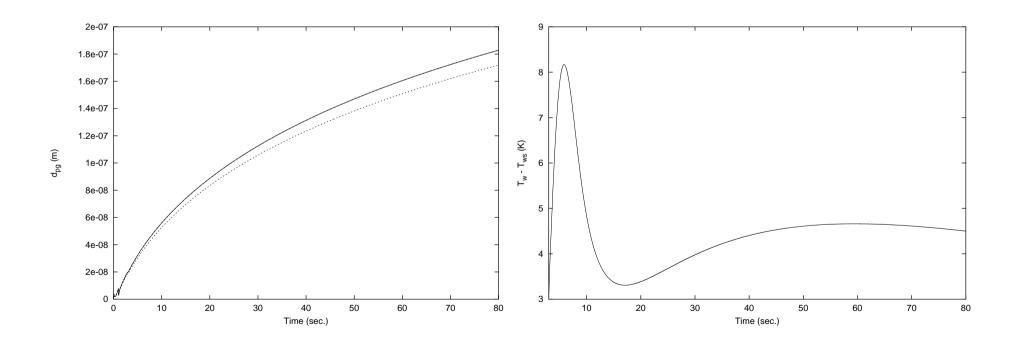
- Profiles of d_{pg} computed by the sectional model (solid line) and the state estimator (dashed line) under nominal conditions(left figure).
- Profiles of d_{pg} computed by the sectional model (solid line) and the state estimator (dashed line) under parametric uncertainty in μ , D_f , v_0 (right figure).



- Open-loop profile (dashed line) and closed-loop profile (solid line) of d_{pg} under uncertainty in the reaction rate constant(left figure).
- Manipulated input profile(right figure).

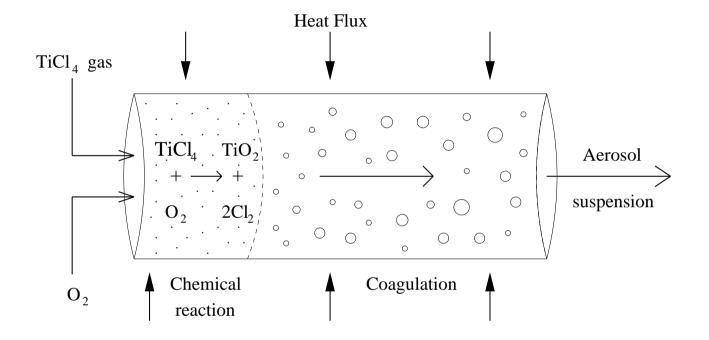


- Open-loop profile (dashed line) and closed-loop profile (solid line) of d_{pg} under uncertainty in the saturation pressure(left figure).
- Manipulated input profile(right figure).



SPATIALLY INHOMOGENEOUS AEROSOL PROCESSES

- Spatially inhomogeneous aerosol processes described by population balances.
 - ♦ A typical aerosol process.



- General framework for the synthesis of nonlinear practically-implementable controllers (Kalani and Christofides, CES, 1999a).
- Application to a titania aerosol reactor (Kalani and Christofides, AST, 2000).

AEROSOL PROCESS MODEL

Particulate phase

• Population balance equation:

$$\frac{\partial n}{\partial t} + v_z \frac{\partial n}{\partial z} + \frac{\partial (G(\bar{x}, v, z)n)}{\partial v} - I(v^*)\delta(v - v^*)
= \frac{1}{2} \int_0^v \beta(v - \bar{v}, \bar{v}, \bar{x}) n(v - \bar{v}, t) n(\bar{v}, t) d\bar{v}
-n(v, t) \int_0^\infty \beta(v, \bar{v}, \bar{x}) n(\bar{v}, t) d\bar{v}$$

n(v, z, t) : aerosol size distribution function

t : time

z : spatial coordinate

v : particle volume

 v_z : fluid velocity

 $G(\bar{x}, v, z)$: growth function

 $I(v^*)$: nucleation rate

 $\beta(v-ar{v},ar{v},ar{x})$: coagulation coefficient

AEROSOL PROCESS MODEL Continuous phase

• Mass and energy balances:

$$\frac{\partial \bar{x}}{\partial t} = \bar{A} \frac{\partial \bar{x}}{\partial z} + \bar{f}(\bar{x}) + \bar{g}(\bar{x})u(z,t) + \tilde{A} \int_0^\infty a(\eta, v, x) dv$$

 $\bar{x}(z,t)$: n-dimensional vector of continuous phase variables (e.g.

 $\bar{f}(\bar{x}), \bar{g}(\bar{x}), a(\eta, v, x)$: nonlinear vector functions

 \bar{A}, \tilde{A} : constant matrices

 $\tilde{A} \int_0^\infty a(\eta, v, \bar{x}) dv$: mass/heat transfer from the continuous to the particle

u(z,t) : manipulated variable

• Convection-reaction equation: System of first-order hyperbolic PDEs.

METHODOLOGICAL FRAMEWORK FOR CONTROL

• Aerosol process model.

$$\begin{split} \frac{\partial n}{\partial t} + v_z \frac{\partial n}{\partial z} + \frac{\partial (G(\bar{x}, v, z)n)}{\partial v} - I(v^*) \delta(v - v^*) \\ &= \frac{1}{2} \int_0^v \beta(v - \bar{v}, \bar{v}, \bar{x}) n(v - \bar{v}, t) n(\bar{v}, t) d\bar{v} - n(v, t) \int_0^\infty \beta(v, \bar{v}, \bar{x}) n(\bar{v}, t) d\bar{v} \\ \frac{\partial \bar{x}}{\partial t} &= \bar{A} \frac{\partial \bar{x}}{\partial z} + \bar{f}(\bar{x}) + \bar{g}(\bar{x}) b(z) u(z, t) + \tilde{A} \int_0^\infty a(\eta, v, \bar{x}) dv \end{split}$$

- Methodology for controller design.
 - ♦ Nonlinear model reduction of population balance equations.
 - ▶ Lognormal aerosol size distribution.
 - ▶ Method of moments.
 - ♦ Nonlinear output feedback controller design. (Christofides and Daoutidis, AIChE J., 1996)

LOGNORMAL AEROSOL SIZE DISTRIBUTION

• Many aerosol size distributions can be adequately modeled by lognormal functions (Pratsinis, JCIS, 1988).

$$n(v,t) = \frac{1}{3\sqrt{2\pi}ln\sigma}exp\left(-\frac{ln^2(v/v_g)}{18ln^2\sigma}\right)\frac{1}{v}$$

 v_q : geometric average particle volume

$$v_g = \frac{M_1^2}{M_0^{\frac{3}{2}} M_2^{\frac{1}{2}}}$$

 σ : standard deviation

$$ln^2\sigma = \frac{1}{9}ln\left(\frac{M_0M_2}{M_1^2}\right)$$

 M_0 , M_1 and M_2 are the three leading volume weighted moments, and:

$$M_k(t) = \int_0^\infty v^k n(v,t) dv = M_0 v_g^k exp\left(\frac{9}{2}k^2 ln^2\sigma\right)$$

• Lognormal aerosols can be adequately described by moment models.

DERIVATION OF MOMENT MODEL

$$\frac{\partial n}{\partial t} + v_z \frac{\partial n}{\partial z} + \frac{\partial (G(\bar{x}, v, z)n)}{\partial v} - I(v^*)\delta(v - v^*)$$

$$=\frac{1}{2}\int_0^v \beta(v-\bar{v},\bar{v},\bar{x})n(v-\bar{v},t)n(\bar{v},t)d\bar{v}$$

$$-n(v,t)\int_0^\infty \beta(v,\bar{v},\bar{x})n(\bar{v},t)d\bar{v}$$

- Multiplication with v^k and integration over all particle size.
- Approximation of n(v, z, t) by a lognormal function.
- Aerosol dynamics over the entire particle spectrum is described by using harmonic means of dimensionless coefficients in free-molecular and continuum regions.

MOMENT MODEL

• Zeroth moment (aerosol concentration):

$$\frac{\partial N}{\partial \theta} = -v_{zl} \frac{\partial N}{\partial \bar{z}} + I' - \xi N^2$$

• First moment (aerosol volume):

$$\frac{\partial V}{\partial \theta} = -v_{zl} \frac{\partial V}{\partial \bar{z}} + I'k^* + \eta(S-1)N$$

• Second moment:

$$\frac{\partial V_2}{\partial \theta} = -v_{zl} \frac{\partial V_2}{\partial \bar{z}} + I'k^{*2} + 2\epsilon(S-1)V + 2\zeta V^2$$

 ξ, ζ : dimensionless coagulation coefficients

$$\frac{1}{\xi} = \frac{1}{\xi_{FM}} + \frac{1}{\xi_C}, \quad \frac{1}{\zeta} = \frac{1}{\zeta_{FM}} + \frac{1}{\zeta_C}$$

 ϵ, η : dimensionless condensation coefficients

$$\frac{1}{\epsilon} = \frac{1}{\epsilon_{FM}} + \frac{1}{\epsilon_C} \quad , \quad \frac{1}{\eta} = \frac{1}{\eta_{FM}} + \frac{1}{\eta_C}$$

MODEL USED FOR ESTIMATOR AND CONTROLLER DESIGN

• Moment model:

$$\frac{\partial N}{\partial \theta} = -v_{zl} \frac{\partial N}{\partial \bar{z}} + I' - \xi N^2$$

$$\frac{\partial V}{\partial \theta} = -v_{zl} \frac{\partial V}{\partial \bar{z}} + I' k^* + \eta (S - 1) N$$

$$\frac{\partial V_2}{\partial \theta} = -v_{zl} \frac{\partial V_2}{\partial \bar{z}} + I' k^{*2} + 2\epsilon (S - 1) V + 2\zeta V^2$$

• Material and energy balances (continuous phase):

$$\frac{\partial \bar{x}}{\partial t} = \bar{A} \frac{\partial \bar{x}}{\partial z} + \bar{f}(\bar{x}) + \bar{g}(\bar{x})u(z,t) + \tilde{A} \int_0^\infty a(\eta, v, \bar{x}) dv$$

• Introducing $x = [N \ V \ V_2 \ \bar{x}]^T$:

$$\frac{\partial x}{\partial t} = A \frac{\partial x}{\partial z} + f(x) + g(x)u$$
$$y = h(x)$$

y: controlled output variable.

SPECIFICATION OF THE CONTROL PROBLEM

- l: number of control actuators
- $b^{i}(z)$: actuator distribution function

•
$$\bar{y}^i = \mathcal{C}^i h(x) = \int_{z_i}^{z_{i+1}} c^i(\tilde{z}) h(x(\tilde{z},t)) d\tilde{z}$$

• $c^{i}(z)$: depends on performance specifications

$$\frac{\partial x}{\partial t} = A \frac{\partial x}{\partial z} + f(x) + g(x) \sum_{i=1}^{l} (H(z - z_i) - H(z - z_{i+1})) b^i(z) \bar{u}^i(t)$$
$$\bar{y}^i(t) = C^i h(x), \ i = 1, \dots, l$$

CHARACTERISTIC INDEX

• Lowest order time-derivative of \bar{y}^i which depends on \bar{u}^i .

$$\bar{y}^{i} = C^{i}h(x)$$

$$\frac{\partial \bar{y}^{i}}{\partial t} = C^{i} \left(\sum_{j=1}^{n} \frac{\partial x_{j}}{\partial z} L_{a_{j}} + L_{f} \right) h(x)$$

$$\frac{\partial^{2} \bar{y}^{i}}{\partial t^{2}} = C^{i} \left(\sum_{j=1}^{n} \frac{\partial x_{j}}{\partial z} L_{a_{j}} + L_{f} \right)^{2} h(x)$$

$$\vdots$$

$$\frac{\partial^{\sigma^{i}} \bar{y}^{i}}{\partial t^{\sigma^{i}}} = C^{i} \left(\sum_{j=1}^{n} \frac{\partial x_{j}}{\partial z} L_{a_{j}} + L_{f} \right)^{\sigma^{i}} h(x)$$

$$+C^{i}L_{g} \left(\sum_{j=1}^{n} \frac{\partial x_{j}}{\partial z} L_{a_{j}} + L_{f} \right)^{\sigma^{i}-1} h(x)b^{i}(z)\bar{u}^{i}$$

• Dependence on actuator distribution function

•
$$\sigma^1 = \sigma^2 = \dots = \sigma^l = \sigma$$

DISTRIBUTED STATE FEEDBACK CONTROL

• Systems of Quasi-linear PDEs

$$\frac{\partial x}{\partial t} = A \frac{\partial x}{\partial z} + f(x) + g(x) \sum_{i=1}^{l} (H(z - z_i) - H(z - z_{i+1})) b^i(z) \bar{u}^i(t)$$
$$\bar{y}^i(t) = \mathcal{C}^i h(x) , \ i = 1, \dots, l$$

• Distributed state feedback controller:

$$\bar{u}^{i} = \left[\mathcal{C}^{i} \gamma_{\sigma} L_{g} \left(\sum_{j=1}^{n} \frac{\partial x_{j}}{\partial z} L_{a_{j}} + L_{f} \right)^{\sigma-1} h(x) b^{i}(z) \right]^{-1}$$

$$\left\{ v^{i} - \mathcal{C}^{i} h(x) - \sum_{\nu=1}^{\sigma} \mathcal{C}^{i} \gamma_{\nu} \left(\sum_{j=1}^{n} \frac{\partial x_{j}}{\partial z} L_{a_{j}} + L_{f} \right)^{\nu} h(x) \right\}$$

DISTRIBUTED STATE FEEDBACK CONTROL

1 Enforces the following input/output response in the closed-loop system:

$$\gamma_{\sigma} \frac{d^{\sigma} \bar{y}^{i}}{dt^{\sigma}} + \dots + \gamma_{1} \frac{d\bar{y}^{i}}{dt} + \bar{y}^{i} = v^{i}$$

- 2 Guarantees local closed-loop stability if:
 - ♦ The roots of the equation

$$1 + \gamma_1 s + \dots + \gamma_{\sigma} s^{\sigma} = 0$$

lie in the open left-half of the complex plane.

♦ The zero dynamics is locally exponentially stable.

DISTRIBUTED OUTPUT FEEDBACK CONTROL Christofides and Daoutidis, AIChE J., 1996

- Combination of distributed state feedback and state observers
- State observer:

$$\frac{\partial \eta}{\partial t} = A \frac{\partial \eta}{\partial z} + f(\eta) + g(\eta) \sum_{i=1}^{l} (H(z - z_i) - H(z - z_{i+1})) b^i(z) \bar{u}^i(t)$$

$$+ \sum_{i=1}^{l} (H(z-z_i) - H(z-z_{i+1})) \mathcal{P}^i(\bar{y}^i - \mathcal{C}^i k(z) \eta)$$

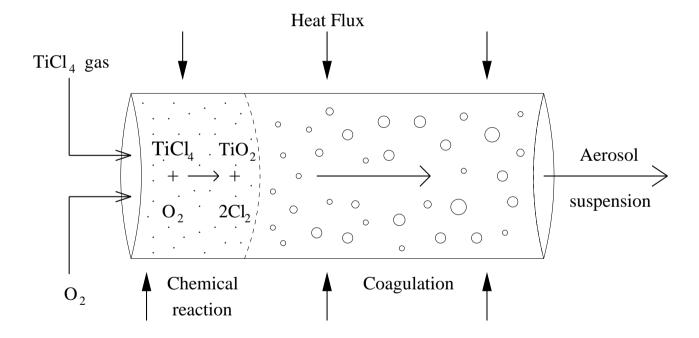
• The eigenvalues of the operator $\bar{\mathcal{L}}^i=A\frac{\partial}{\partial z}+B(z)-\mathcal{P}^i\mathcal{C}^ik(z)$ lie in the left-half plane

APPLICATION TO A TITANIA AEROSOL REACTOR

• Aerosol reactor used to produce TiO_2 , according to:

$$TiCl_4(g) + O_2(g) \rightarrow TiO_2(s) + 2Cl_2(g)$$

• Schematic of the process:



- Chemical reaction and nucleation cannot be distinguished.
- Brownian and turbulent coagulation determine particle size.

PROCESS MODEL

• Process model (lognormal size distribution):

$$\frac{\partial N}{\partial \theta} = -\phi \frac{\partial (\bar{v}_z N)}{\partial \bar{z}} + k' x_1 - \xi N^2
\frac{\partial V}{\partial \theta} = -\phi \frac{\partial (\bar{v}_z V)}{\partial \bar{z}} + k' x_1
\frac{\partial V_2}{\partial \theta} = -\phi \frac{\partial (\bar{v}_z V_2)}{\partial \bar{z}} + k' x_1 + 2\zeta V^2
\frac{\partial C_i}{\partial \theta} = -\phi \frac{\partial (\bar{v}_z \bar{C}_i)}{\partial \bar{z}} + \alpha_i k' \bar{C}_i, \quad i = 1, ..., 3
\frac{\partial T}{\partial \theta} = -\phi \frac{\partial (\bar{v}_z \bar{T})}{\partial \bar{z}} + \left[Ak' \bar{C}_1 + B(\bar{T}_w - \bar{T}) \right] \bar{C}_{pv}^{-1}
\frac{\partial \bar{v}_z}{\partial \theta} = -\phi \bar{v}_z \frac{\partial \bar{v}_z}{\partial \bar{z}} + E \bar{v}_z^2$$

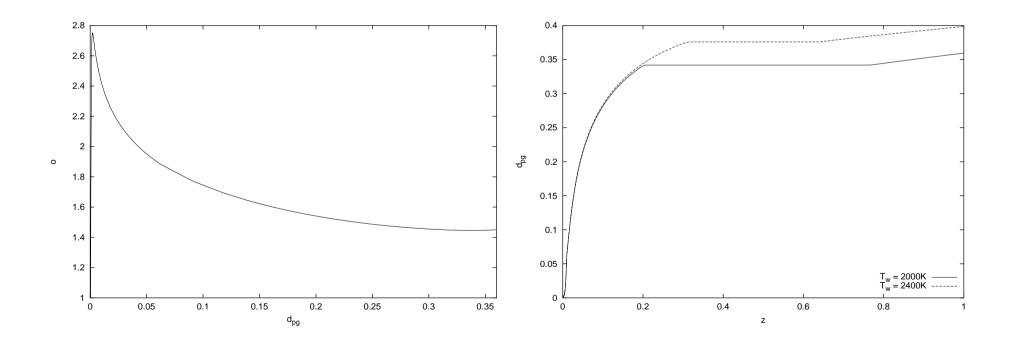
 $\overline{C}_1, \overline{C}_2, \overline{C}_3$: dimensionless concentrations of $TiCl_4, O_2$ and Cl_2

 $ar{T}, ar{T}_w$: dimensionless process and wall temperatures

 A_1, A_2, B, C, E : dimensionless constants

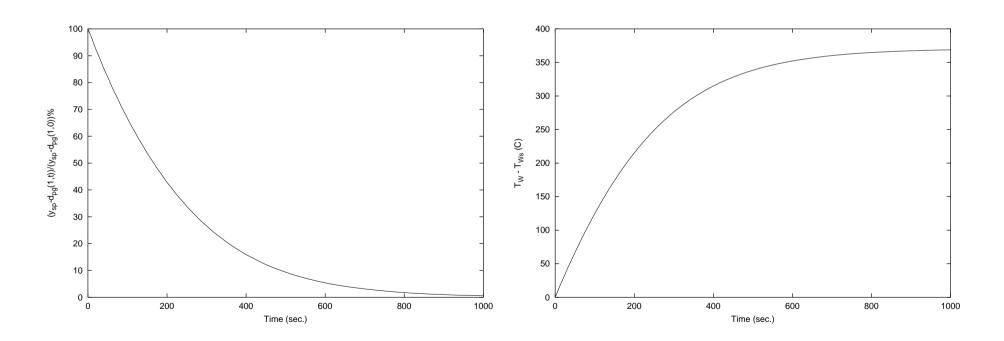
SPECIFICATION OF THE CONTROL PROBLEM

- Optimal reactor design to minimize product polydispersity (left figure).
- Effect of wall temperature on geometric average particle diameter (right figure).
- Controlled output: v_g at the outlet of the reactor; Manipulated input: T_w .



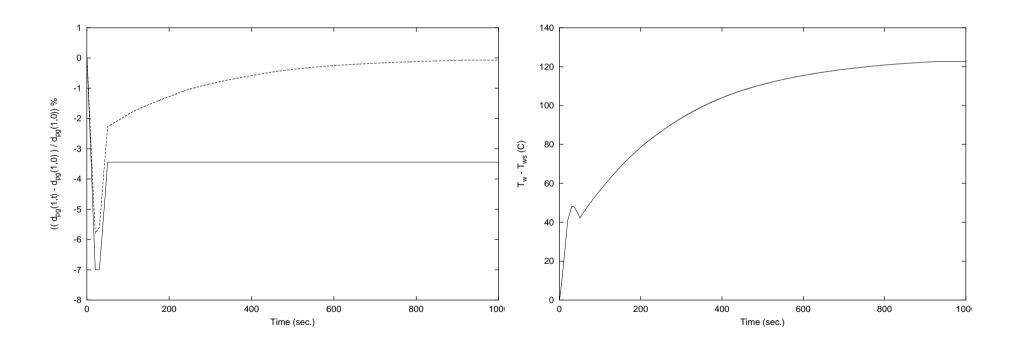
Nominal case

- Closed-loop profile of v_g in the outlet of the reactor under nonlinear control(left figure).
- Manipulated input profile under nonlinear control (right figure).



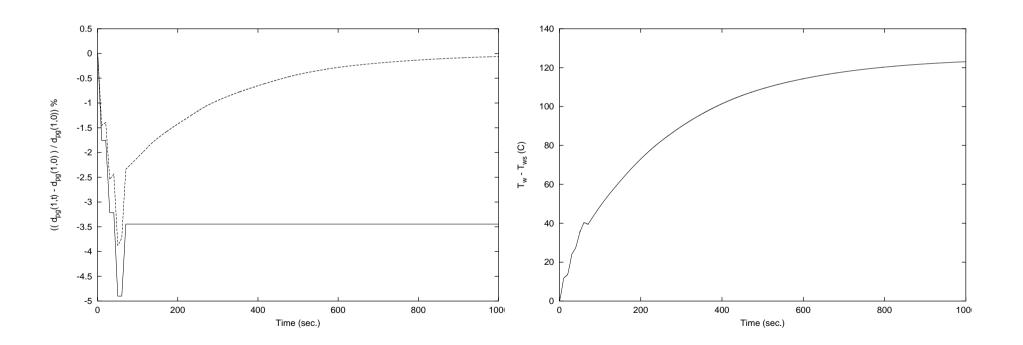
Unmeasured disturbances in parallel

- Open-loop profile and closed-loop profile of v_g in the outlet of the reactor under nonlinear control (left figure).
- Manipulated input profile under nonlinear control (right figure).



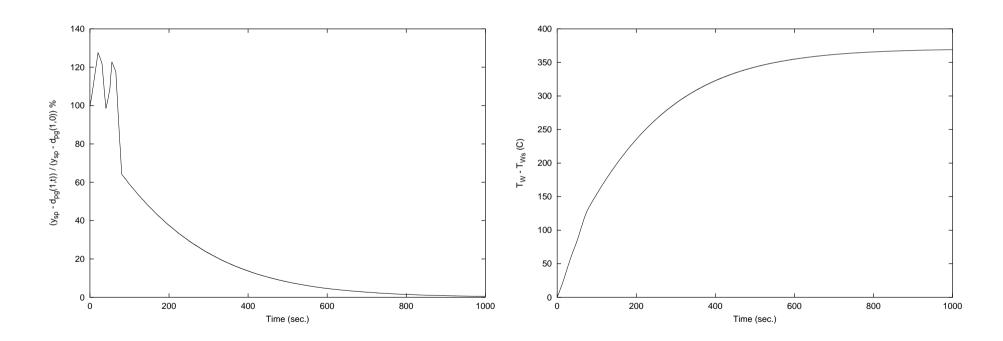
Unmeasured disturbances in series

- Open-loop profile and closed-loop profile of v_g in the outlet of the reactor under nonlinear control (left figure).
- Manipulated input profile under nonlinear control (right figure).



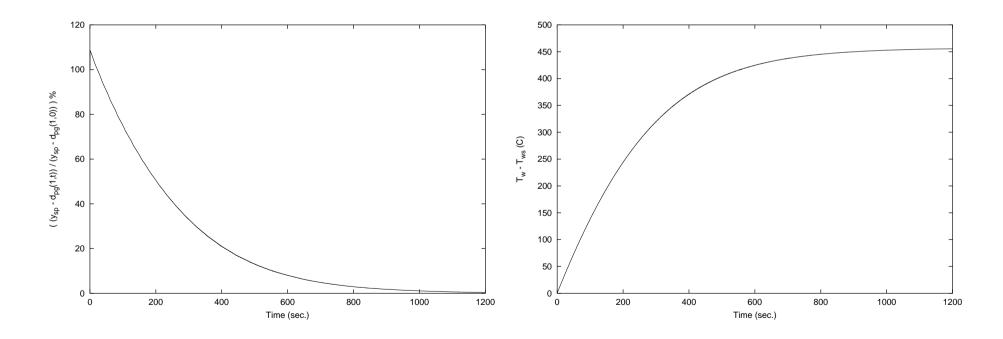
Unmeasured disturbances

- Closed-loop profile of v_g in the outlet of the reactor under nonlinear control(left figure).
- Manipulated input profile under nonlinear control (right figure).



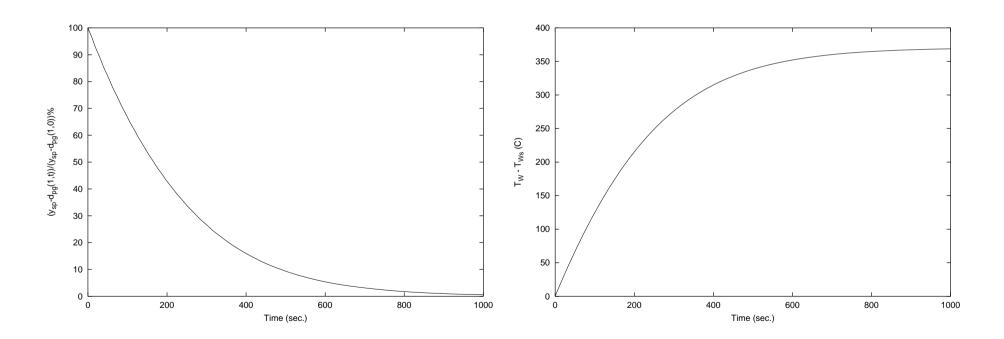
Parametric Uncertainty

- Closed-loop profile of v_g in the outlet of the reactor under nonlinear control (left figure).
- Manipulated input profile under nonlinear control (right figure).



Unmodeled actuator dynamics

- Closed-loop profile of v_g in the outlet of the reactor under nonlinear control (left figure).
- Manipulated input profile under nonlinear control (right figure).



SUMMARY

- Methods for nonlinear order reduction and control for various classes of particulate process.
 - ♦ Model reduction
 - ♦ Model-based controller design
 - ▷ Geometric, Lyapunov-based and Model Predictive Control
 - Control relevant problems:
 - * Nonlinearity

* Uncertainty

* Constraints

- * State measurements
- Applications to complex particulate processes.
 - ♦ Control of size distribution in crystallization.
 - ♦ Seeded batch crystallizer.
 - ♦ Aerosol Titania reactor.

GRADUATE STUDENTS

- Former graduate students: Charalambos Antoniades, Antonios Armaou, James Baker, Eugene Bendersky, Timothy Chiu, and Ashish Kalani.
- Current doctoral students: Nael El-Farra, Stevan Dubljevic, Mingheng Li, Yiming Lou, Prashant Mhaskar, Dong Ni, Prasenjit Ray, and Dan Shi.

FINANCIAL SUPPORT

- NSF: CTS-9733509 (CAREER), CTS-0002626 and CTS-0129571.
- NSF: BES-9814097.
- AFOSR and WPAFB.
- ONR (YIA).
- PRF and Simulation Sciences Inc.
- UC-Energy Institute, UCLA-CERR and UCLA-OID.