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INTRODUCTION

• Incentives for chemical process control.

Regulations

Chemical Process
ProductsRaw Materials

Safety

Economics
Envir.

Production
Specs.

¦ Need for continuous monitoring and external intervention (control).

• Objectives of a process control system.

¦ Ensuring stability of the process.

¦ Suppressing the influence of external disturbances.

¦ Optimizing process performance.



BASIC CONCEPTS IN PROCESS CONTROL

• Process variables.
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• Feedback control loop.
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¦ Controller synthesis based on a fundamental process model.



PROCESS CONTROL RESEARCH IN OUR GROUP
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ISSUES IN CHEMICAL PROCESS CONTROL

¦ Nonlinear behavior:

. Arrhenius dependence of reac-
tion rates on temperature.

. Complex reaction mechanisms.

¦ Model uncertainties:

. Unknown process parameters.

. Exogenous disturbances.
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Continuous-stirred tank reactor
¦ Input and state constraints:

. Limited capacity of control actuators.

. Operating ranges for process variables (environmental, safety, quality
reasons).



NONLINEAR CONTROL THEORY VS. PROCESS CONTROL
PRACTICE

• Nonlinear control theory and tools:

¦ Requires a nonlinear process model.

¦ Geometric control, Lyapunov-based control, etc.

¦ Allow rigorous analysis of closed–loop stability and performance
properties.

• Process control practice:

¦ Proportional-Integral-Derivative (PID) control.
Linear Model Predictive Control (MPC).

¦ Do not account for the complex dynamics of the process.

• Nonlinear control implementation requires redesign of control hardware:
¨
§

¥
¦Use nonlinear control theory to aid process control practice



FOCUS OF THE PRESENT TALK

• Integrating Lyapunov-based control & predictive control algorithms:

¦ Design of a hybrid predictive control structure.

¦ Applications to linear systems under state and output feedback.

¦ Application to nonlinear systems.

• Development of “nonlinear” tuning guidelines for PID controllers:

¦ Optimization-based approach to make the PID controller response
emulate that of a nonlinear controller.



LINEAR SYSTEMS WITH CONSTRAINTS

• State-space description:

ẋ(t) = Ax(t) + Bu(t)

u(t) ∈ U

¦ x(t) ∈ IRn, vector of process variables: concentrations, temperatures, etc.

¦ u(t) ∈ U ⊂ IRm, control input: flow rates, heat input etc.

¦ u = 0 ∈ interior of U , nominal operating point.

¦ U ⊂ IRm, compact & convex: limited flow rates, heat duties etc.

¦ (A,B) : controllable pair ¦ A ∈ IRn×n, B ∈ IRn×m

• Stabilization of origin under constraints.



MODEL PREDICTIVE CONTROL
(Rawlings, IEEE CSM, 2000)

• Control problem formulation

? Finite-horizon optimal control:®

­

©

ª
P (x, t) : min{J(x, t, u(·))| u(·) ∈ U∆}

? Performance index:

J(x, t, u(·)) = F (x(t + T )) +
∫ t+T

t

[‖xu(s; x, t)‖2Q + ‖u(s)‖2R
]
ds

¦ ‖ · ‖Q : weighted norm ¦ Q, R > 0 : penalty weights

¦ T : horizon length ¦ F (·) : terminal penalty

? Implicit feedback law

M(x) = u0(t; x, t)

“repeated on-line optimization”
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MODEL PREDICTIVE CONTROL

• Formulations for closed-loop stability:

(Mayne et al, Automatica, 2000)

¦ Adjusting horizon length, terminal penalty, weights, etc.

¦ Imposing stability constraints on optimization:

. Terminal equality constraints:
¨
§

¥
¦x(t + T ) = 0

. Terminal inequality constraints:
¨
§

¥
¦x(t + T ) ∈ W

. Control Lyapunov functions:
¨
§

¥
¦V (x(t + T )) < V (x(t))

• Issues of practical implementation:

¦ Lack of explicit characterization of stability region:

. Extensive closed-loop simulations.

. Restrict implementation to small neighborhoods.



BOUNDED LYAPUNOV-BASED CONTROL

• Explicit bounded nonlinear control law:

u = −k(x, umax)(LGV )T

¦ An example gain: (Lin & Sontag, 1991)

k(x, umax) =


 LfV +

√
(LfV )2 + (umax‖(LGV )T ‖)4

‖(LGV )T ‖2
[
1 +

√
1 + (umax‖(LGV )T ‖)2

]



²

±

¯

°

V = xT Px, AT P + PA− PBBT P < 0

LfV = xT (AT P + PA)x, LGV = 2xT PB

¦ Nonlinear gain-shaping procedure:

? Accounts explicity for constraints & closed-loop stability.

• Constrained closed-loop properties:

¦ Asymptotic stability. ¦ Inverse optimality.



CHARACTERIZATION OF STABILITY PROPERTIES

(El-Farra & Christofides, Chem. Eng. Sci., 2001, 2003)

D(umax) = {x ∈ IRn : LfV < umax|(LGV )T |}

• Properties of inequality:

¦ Describes open unbounded region where:

. |u| ≤ umax ∀ x ∈ D

. V̇ < 0 ∀ 0 6= x ∈ D

¦ Captures constraint-dependence of stability region.

¦ D not necessarily invariant.

• Region of guaranteed closed-loop stability:
®

­

©

ª
Ω(umax) = {x ∈ IRn : V (x) ≤ cmax}

¦ Region of invariance: x(0) ∈ Ω =⇒ x(t) ∈ Ω ⊂ D ∀ t ≥ 0.

¦ Provides larger estimate than saturated linear/nonlinear controllers.



UNITING BOUNDED CONTROL AND MPC
(El-Farra, Mhaskar & Christofides, Automatica, to appear)

• Objectives:

¦ Development of a framework for merging the two approaches:

. Reconcile tradeoffs in stability and optimality properties

? Explicit characterization of constrained stability region.

? Efficient implementation of MPC.

? Possibility of improved performance.

• Central idea:

Decoupling “optimality” & “constrained stabilizability”

¦ Stability region provided by bounded controller.

¦ Optimal performance provided by MPC.

• Approach:

¦ Switching between MPC & bounded controller.



HYBRID PREDICTIVE CONTROL STRUCTURE
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• Hierarchical control structure
¦ Plant level ¦ Control level ¦ Supervisory level

• Overall structure independent of specific MPC algorithm used:

¦ Switching rules may vary.

• Numerous variants of switching scheme possible.



STABILITY-BASED CONTROLLER SWITCHING

• Switching logic:

uσ(x(t)) =





M(x(t)), 0 ≤ t < T ∗

b(x(t)), t ≥ T ∗





¨

§

¥

¦
T ∗ = inf{T ∗ ≥ 0 : −‖xM (T ∗)‖2

Q̄
+ ‖BT PxM (T ∗)‖2 + 2xMT

(T ∗)PBu(T ∗) ≥ 0}

¦ Initially implement MPC,
x(0) ∈ Ω(umax).

¦ Monitor temporal evolution
of V (xM (t)) = xT (t)Px(t).

¦ Switch to bounded controller
only if V (xM (t)) starts to in-
crease.

V(x)=Cmax

V(x)=C2

V(x)=C1

umaxΩ(       )

x(T  )

Bounded controller’s

Switching

x(0)

*

Active Bounded control
Active MPC 

Stability region



STABILITY-BASED CONTROLLER SWITCHING

• Implications of switching scheme:

¦ Switched closed-loop inherits bounded controller’s stability region:

. A priori guarantees for all x(0) ∈ Ω(umax).

¦ Lyapunov stability condition checked & enforced by “supervisor”:

. Reduce computational complexity of optimization.

. Scheme does not require stability of MPC within Ω(umax).

. Provides a safe mechanism for implementing MPC.

. Stability independent of horizon length.

• Conceptual differences from other schemes:

¦ Switching does not occur locally.

¦ Provides stability region explicitly.

¦ No switching occurs if V (xM (t)) decays continuously:
. Only MPC is implemented =⇒ optimal performance recovered.



ENHANCING CLOSED-LOOP PERFORMANCE
• Relaxing switching rules:

uσ(x(t)) =





M(x(t)), 0 ≤ t < min{T ∗, TN}
b(x(t)), t ≥ min{T ∗, TN}





¨
§

¥
¦T ∗ = inf{T ∗ ≥ 0 : V (xM (T ∗)) = cmax}¨

§
¥
¦TN = sup{Ti ≥ 0 : V̇ (xM (Ti)) = 0, i = 1, · · · , N < ∞}

¦ Allow increases in V (xM (t)).

¦ Stability safeguards: switch if

. Trajectory hits ∂Ω(umax), or

. V̇ (x(t)) changes sign N

times.

¦ Greater flexibility for MPC im-
plementation.

maxΩ(       )
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SWITCHING WITH “STABLE” MPC FORMULATIONS
• MPC with stability constraints:#

"

Ã

!

min
u(·)

∫ t+T

t

(xT (s)Qx(s) + uT (s)Ru(s))ds

s.t. ẋ(t) = Ax(t) + Bu(t), x(0) = x0

u(·) ∈ U∆

x(T ) ∈ ΩTerminal

• Feasibility-based switching:

uσ(x(t)) =





b(x(t)), 0 ≤ t < T ∗

M(x(t)), t ≥ T ∗





¦ T ∗ : earliest time for which
MPC yields feasible solution.

¦ Frequent off-line supervisory
“checks” of MPC feasibility.

maxΩ(       )

1V(x)=C

V(x)=Cmax

V(x)=C2

u
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Check MPC feasibility 
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NUMERICAL EXAMPLE

• State space description:

ẋ =


 0.5 0.25

0.5 1


 x +


 1 0

0 1


 u

¦ Origin unstable (two real positive eigenvalues).

¦ Input constraints: ui ∈ [−5, 5], i = 1, 2.

• Bounded controller:

¦ Lyapunov function: V = xT Px, P =


 1.03 0.306

0.306 1.18




¦ Stability region: xT (AT P + PA)x < 10‖BT Px‖
• Model predictive controller:

¦ Performance index:²

±

¯

°
J =

∫ t+T

t

[‖x(τ)‖2Q + ‖u(τ)‖2R + ‖u̇(τ)‖2S
]
dτ

Q = qI > 0, R = rI > 0, S = sI > 0



CLOSED-LOOP SIMULATION RESULTS
“Feasibility-based switching”
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? Closed-loop trajectories

¦ x1(0) = [2 − 2]T ∈ Ω =⇒ MPC (q = 1; r = 4; T = 1) feasible

¦ x2(0) = [5 − 5]T ∈ Ω =⇒ MPC (q = 1; r = 4; T = 1) NOT feasible
? Use bounded controller ? Switch to MPC at t = 0.6



STATE ESTIMATION & OUTPUT FEEDBACK CONTROL

• Lack of full state measurements:

¦ Inaccessibility of some process variables for measurement.

¦ Estimation of states from measured outputs necessary.

• Main objectives for output feedback controller design:

¦ To establish guaranteed stability from an explicitly characterized set of
initial conditions:

. Design technique for the state estimator.

. Devise switching rules, based on available state measurements.

¦ Controlled rate of convergence of state estimation error.

• Approach for output feedback controller design:

¦ Relies on separation principle: combination of

. State feedback controllers.

. State observers.



DESIGN OF STATE OBSERVER

• State space description of estimator:

˙̂x(t) = Ax̂(t) + Bu(t) + L(y − Cx̂)

¦ x̂: state estimate. ¦ L: Observer gain matrix.

• Structural features:
¦ Observer pole placement:

. Enforce desired decay of estimation error

¦ Effect of observer peaking eliminated through:
. Input saturation (indirect).
. Estimate-saturation (direct)(e.g., El-Farra & Christofides, IJC, 2001).

• Closed-loop analysis:
¦ Fall back (bounded controller) robust to a certain allowable error.

¦ For a given choice of initial conditions:
. State estimator designed to force error under the allowable error.
. Switching laws, based on the state estimates, for “safe” MPC

implementation.



STATE ESTIMATION & OUTPUT FEEDBACK CONTROL
• Practical implications:

¦ Any other estimation scheme, such as Moving Horizon Estimation
(MHE), can be used.

¦ Requires a transparent relationship between error decay and estimator
parameters.

¦ MPC implemented in a region where the fall back controller can step in
any time to rescue stability.
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State feedback
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OUTPUT FEEDBACK IMPLEMENTATION OF SWITCHING
(Mhaskar, El-Farra & Christofides, AIChE J., to appear)

• Bounded controller design
(u = −k(x)LgV, Ω(umax)).

• State observer design
(given Ωb ⊂ Ω, compute L).

• Estimate ’safe’ region
(given x̂ ∈ Ωs ⇒ x ∈ Ω).

• Initialize: x̂(0) ∈ Ωb, u(0) = b(x̂(0)).

• After x̂ enters ‘safe’ region, Ωs, check
feasibility of MPC & implement if
V̇ (x̂) < 0 else keep bounded controller
active.

x (0)

x (0)

MPC feasible

|e| < e
m

Switch to MPC

Ω(       )umax

State estimate trajectory
State trajectory

Switching surface
Ωs

Ωb



NONLINEAR SYSTEMS WITH INPUT CONSTRAINTS

• State–space description:

ẋ(t) = f(x(t)) + g(x)u(t)

u(t) ∈ U

¦ x(t) ∈ IRn : state vector ¦ u(t) ∈ U ⊂ IRm : control input

¦ U ⊂ IRm: compact & convex ¦ u = 0 ∈ interior of U

¦ (0, 0) an equilibrium point

• Stabilization of origin under constraints



NONLINEAR MPC: IMPLEMENTATION ISSUES

• Optimization problem non-convex:

¦ Does not reduce to a Quadratic Program.

¦ Possibility of multiple, local optima.

¦ Optimization problem hard to solve (e.g., algorithm failure).

¦ Stability requirements harder to implement.

¦ Difficult to obtain solution within “reasonable” time.

• Lack of explicit characterization of stability region:

¦ Extensive closed-loop simulations.

¦ Restrict implementation to small neighborhoods.



BOUNDED LYAPUNOV-BASED CONTROL

• Explicit bounded nonlinear control law:

u = −k(x, umax)(LGV )T

• Region of guaranteed closed-loop stability:
®

­

©

ª
Ω(umax) = {x ∈ IRn : V (x) ≤ cmax}

¦ Region of invariance:x(0) ∈ Ω =⇒ x(t) ∈ Ω ⊂ D ∀ t ≥ 0.

¦ Larger estimates using a combination of several Lyapunov functions.

¦ Other Lyapunov–based bounded control designs can be used.



HYBRID PREDICTIVE CONTROL STRUCTURE
(El-Farra, Mhaskar & Christofides, IJRNC, to appear)
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• Hierarchical control structure
¦ Plant level ¦ Control level ¦ Supervisory level

• Overall structure independent of specific MPC algorithm used:

¦ Could use linear/nonlinear MPC with or without stability constraints.



STABILITY-BASED CONTROLLER SWITCHING

• Switching logic:

uσ(x(t)) =





M(x(t)), 0 ≤ t < T ∗

b(x(t)), t ≥ T ∗





¨
§

¥
¦LfVk(x) + LgVk(x)M(x(T ∗)) ≥ 0

¦ Initially implement MPC,
x(0) ∈ Ωk(umax).

¦ Monitor temporal evolution
of Vk(xM (t)).

¦ Switch to bounded controller
only if Vk(xM (t)) starts to in-
crease.

1
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PRACTICAL IMPLEMENTATION

• A “typical” predictive control design:

¦ Nonlinear process model:

ẋ = f(x) + g(x)u

ui
min ≤ ui ≤ ui

max

¦ Linear representation:

ẋ = Ax + Bu

ui
min ≤ ui ≤ ui

max

. Linearization
(around desired steady-state)

. Model identification
(e.g., through step tests)

¦ Use of computationally efficient linear MPC (QP) algorithms.

¦ No closed-loop stability guarantees for nonlinear system.

• Practical value of the hybrid control structure:

¦ Provides stability guarantees through fall-back controllers.

¦ Entails no modifications in existing predictive controller design.



APPLICATION TO A CHEMICAL REACTOR

• Process dynamic model:

ĊA =
F

V
(CA0 − CA)− k0e

−E

RTR CA

ṪR =
F

V
(TA0 − TR) +

(−∆H)
ρcp

k0e

−E

RTR CA +
UA

ρV cp
(Tc − TR)

¦ Multiple steady–states.

¦ Control objective:

. Stabilization at open–loop unstable equilibrium point,
(CAs, Ts) = (0.52 mol/L, 398 K).

¦ Manipulated input: u = Tc ∈ [275, 370] .



CONTROLLER DESIGN

• Model predictive controller:

¦ Performance index:²

±

¯

°
J =

∫ t+T

t

[‖x(τ)‖2Q + ‖u(τ)‖2R + ‖u̇(τ)‖2S
]
dτ

Q = qI > 0, R = rI > 0, S = sI > 0

¦ Prediction model:

ẋ = Ax + Bu

. (A, B) from linearizing the nonlinear model around (CAs, Ts).

¦ Terminal equality constraint: x(t + T ) = 0.

• Family of bounded controllers:

¦ Designed using a normal form representation.

¦ Several Lyapunov functions: Vk = ξT Pkξ, k = 1, 2, 3, 4.

¦ Stability region: Ω =
4⋃

k=1

Ωk



CLOSED-LOOP SIMULATION RESULTS
“Stability-based switching”
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¦ MPC with T = 0.25; MPC/BC(4) switching (t = 0.4).

¦ MPC with T = 0.5; MPC/BC(3) switching (t = 1.9).



APPLICATION TO A CONTINUOUS CRYSTALLIZER

• Crystallizer moments model:

ẋ0 = −x0 + (1− x3)Da exp
(−F

y2

)

ẋ1 = −x1 + yx0

ẋ2 = −x2 + yx1

ẋ3 = −x3 + yx2

ẏ =
1− y − (α− y)yx2

1− x3
+

u

1− x3

¦ Unstable equilibrium point surrounded by stable limit cycle.

¦ Control objective:

. Stabilization at unstable equilibrium point.

. Input constraints: u ∈ [−1, 1].

• Bounded controller: designed using normal form.

• Predictive controller: linear prediction model with stability constraints.



PROJECTIONS OF STABILITY REGION
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CLOSED-LOOP SIMULATION RESULTS
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¦ x1(0): MPC with T = 0.25 feasible

¦ x2(0): MPC with T = 0.25 (no terminal constraints)

¦ x2(0): switching to bounded controller



TUNING CLASSICAL CONTROLLERS USING NONLINEAR
CONTROL THEORY

• Proportional-Integral-Derivative (PID) control:

spy
+

y
-

e ProcessPID Controller

Methods
Tuning 

Model
Linear

K τ τ
DIc

u

• “Easy” to use and implement:

¦ Tuning rules based on linear process models.

• Do not account for

¦ Process nonlinearities, uncertainties, constraints etc.

• Extensive re-tuning / poor performance.



TUNING CLASSICAL CONTROLLERS USING NONLINEAR
CONTROL THEORY

• Nonlinear controllers:

spy u
Process

y
Nonlinear Controller

¦ Handle process uncertainties/time delays/state estimation/...

¦ Provide rigorous results and analysis.

¦ Require better understanding of the process (nonlinear models).

¦ Implementation requires redesign of existing control hardware.

• Gap between

. Nonlinear control theory tools.

. Process control practice (Kc, τi, τd).¨
§

¥
¦Use/develop nonlinear control tools for PID controller tuning



TUNING METHOD

• Tuning method:

sp
+

y

-

Processe PID Controller

Tuning 

K τ τ
DIc

u y

Controller
Nonlinear 

guidelines

y=h(x)
x=f(x)+g(x)u
.

¦ Design a nonlinear controller that accounts for the complex process
dynamics.

¦ Compute, but not implement, the control action as prescribed by the
nonlinear controller.

¦ Set up and solve an optimization problem:
. The objective function ‘measures’ the difference between the control

action of the PID and the nonlinear controller.
. The decision variables are the PID controller parameters.



APPLICATION TO A NONLINEAR PROCESS MODEL

• Process description:

dT

dt
=

F

V
(TA0 − T ) +

3∑

i=1

(−∆Hi)
ρcp

ki0e

−Ei

RT CA +
Q

ρcpV

dCA

dt
=

F

V
(CA0 − CA)−

3∑

i=1

ki0e

−Ei

RT CA

¦ Three steady-states (two locally asymptotically stable and one
unstable).

¦ Stabilize the reactor at the open–loop unstable steady–state using the
jacket temperature as the manipulated input.



CLOSED-LOOP SIMULATION RESULTS
“Nonlinear-control based PID tuning”
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(b)

¦ (a) Input & (b) state profiles.

¦ The nonlinear controller is only designed, not implemented.

¦ PID controller designed to ‘emulate’ the action of the nonlinear controller.



CONCLUSIONS

• Issues in Process Control:

¦ Nonlinearities, uncertainties, constraints and state estimation.

• Integrate tools from nonlinear control theory with existing process control
practice.

¦ Safety–net for predictive control implementation.

¦ Improved tuning of classical controllers.

• Practical implementation:

¦ Software: Direct incorporation into existing MPC packages.

¦ Hardware: Does not require redesigning existing classical control
hardware.
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