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INTRODUCTION

e Incentives for chemical process control.
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o Need for continuous monitoring and external intervention (control).

Raw Materials
—| Chemical Process

e Objectives of a process control system.
¢ Ensuring stability of the process.
¢ Suppressing the influence of external disturbances.

¢ Optimizing process performance.



BASIC CONCEPTS IN PROCESS CONTROL

e Process variables.
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¢ Controller synthesis based on a fundamental process model.
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ISSUES IN CHEMICAL PROCESS CONTROL

¢ Nonlinear behavior:

> Arrhenius dependence of reac-

tion rates on temperature.

> Complex reaction mechanisms.

¢ Model uncertainties:

> Unknown process parameters.

> Exogenous disturbances.
Continuous-stirred tank reactor

¢ Input and state constraints:
> Limited capacity of control actuators.
> Operating ranges for process variables (environmental, safety, quality

reasons).



NONLINEAR CONTROL THEORY VS. PROCESS CONTROL
PRACTICE

e Nonlinear control theory and tools:
¢ Requires a nonlinear process model.
¢ (Geometric control, Lyapunov-based control, etc.
¢ Allow rigorous analysis of closed—loop stability and performance
properties.

e Process control practice:

¢ Proportional-Integral-Derivative (PID) control.
Linear Model Predictive Control (MPC).

¢ Do not account for the complex dynamics of the process.

e Nonlinear control implementation requires redesign of control hardware:

( Use nonlinear control theory to aid process control practice J




FOCUS OF THE PRESENT TALK

e Integrating Lyapunov-based control & predictive control algorithms:

¢ Design of a hybrid predictive control structure.
¢ Applications to linear systems under state and output feedback.

¢ Application to nonlinear systems.

e Development of “nonlinear” tuning guidelines for PID controllers:

¢ Optimization-based approach to make the PID controller response

emulate that of a nonlinear controller.
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LINEAR SYSTEMS WITH CONSTRAINTS

State-space description:

z(t) € IR™, vector of process variables: concentrations, temperatures, etc.
u(t) € U C IR™, control input: flow rates, heat input etc.

u = 0 € interior of U/, nominal operating point.

o U C IR™, compact & convex: limited flow rates, heat duties etc.

o (A, B) : controllable pair o A € R™™ B e R"X™

Stabilization of origin under constraints.



MODEL PREDICTIVE CONTROL
(Rawlings, IEEE CSM, 2000)

e Control problem formulation

* Finite-horizon optimal control:
[ P(xz,t) : min{J(x,t,u(-))| u(-) € UA}j

x Performance index:

t+T
J@tu() = Fa+D)+ [ [le(sa 0l + ()] ds

o || -]l : weighted norm o ), R >0 : penalty weights
o T : horizon length o F(-) : terminal penalty
x Implicit feedback law pestfure -
% predlcted state trajectory
‘ M(z) = u%t;x,t) k'k
17 ol computed manipulated input
“repeated on-line optimization” ] _\_ trajectory
=T

prediction horizon



MODEL PREDICTIVE CONTROL

e Formulations for closed-loop stability:
(Mayne et al, Automatica, 2000)

¢ Adjusting horizon length, terminal penalty, weights, etc.

¢ Imposing stability constraints on optimization:

> Terminal equality constraints: [z(t +T7) =0 j

> Terminal inequality constraints: [x(t +T) e W ]

> Control Lyapunov functions: [V(:c(t +T)) < V(z(t)) j

e Issues of practical implementation:

¢ Lack of explicit characterization of stability region:

> Extensive closed-loop simulations.

> Restrict implementation to small neighborhoods.



BOUNDED LYAPUNOV-BASED CONTROL

e Explicit bounded nonlinear control law:

u = —k(x, Umaz)(LaV)

o An example gain: (Lin & Sontag, 1991)

LV ++/(L§V)? + (umae ||(LeV)T|)*

k(x, Umaz) =
I(EaV)TI2 |1+ \/T+ (tmar [ (LaV)TT)?|
V = 2Pz, ATP+ PA—PBBTP < 0
L;V = z'(A"P+PA)zx, LgV = 22" PB

¢ Nonlinear gain-shaping procedure:
* Accounts explicity for constraints & closed-loop stability.

e Constrained closed-loop properties:

¢ Asymptotic stability. ¢ Inverse optimality.



CHARACTERIZATION OF STABILITY PROPERTIES
(El-Farra & Christofides, Chem. Eng. Sci., 2001, 2003)

D(Umaz) = {ze€R": LV < Umaz|(LaV) |}

e Properties of inequality:

¢ Describes open unbounded region where:
> |u| < Umae YT €D
>V <0V O0#£zeD

¢ Captures constraint-dependence of stability region.

¢ D not necessarily invariant.

e Region of guaranteed closed-loop stability:

[Q(umam) = {zeR":V(x) < Cmax} J

o Region of invariance: z(0) € Q = x(t) e Q C DVt > 0.

o Provides larger estimate than saturated linear/nonlinear controllers.



UNITING BOUNDED CONTROL AND MPC
(El-Farra, Mhaskar & Christofides, Automatica, to appear)

e Objectives:

¢ Development of a framework for merging the two approaches:

> Reconcile tradeoffs in stability and optimality properties
* Explicit characterization of constrained stability region.
* Efficient implementation of MPC.

* Possibility of improved performance.

e Central idea:

‘Decoupling “optimality” & “constrained stabilizability” I

o Stability region provided by bounded controller.

¢ Optimal performance provided by MPC.

e Approach:
¢ Switching between MPC & bounded controller.



HYBRID PREDICTIVE CONTROL STRUCTURE

Switching logic

X(t)

Perofrmance
objectives

l

<—PIant—>F Contol IeveI#*— Supervisory layer —

Bounded | : ,N V/\ \ MPC ]
controller I . controller
"Constraints" I "Optimality”
X(t) = Ax(t) + Bu (t)
U] <u,..
e Hierarchical control structure
¢ Plant level o Control level < Supervisory level

e Overall structure independent of specific MPC algorithm used:

¢ Switching rules may vary.

e Numerous variants of switching scheme possible.



STABILITY-BASED CONTROLLER SWITCHING

e Switching logic:

Bounded controller’s
Stability region
Q(Umax)

¢ Initially implement MPC,
z(0) € Q(Umaz)-

¢ Monitor temporal evolution Switching

of V(:UM(t)) — :UT(t)Px(t). X(T")
o Switch to bounded controller

only if V(2™ (t)) starts to in-

Crease. V(X)=Cres Active MPC

— & Active Bounded control



STABILITY-BASED CONTROLLER SWITCHING

e Implications of switching scheme:

¢ Switched closed-loop inherits bounded controller’s stability region:

> A priori guarantees for all £(0) € Q(Umaz)-

¢ Lyapunov stability condition checked & enforced by “supervisor”:

> Reduce computational complexity of optimization.
> Scheme does not require stability of MPC within Q (s )-
> Provides a safe mechanism for implementing MPC.

> Stability independent of horizon length.
e Conceptual differences from other schemes:

¢ Switching does not occur locally.
¢ Provides stability region explicitly.

o No switching occurs if V(2™ (t)) decays continuously:

> Only MPC is implemented = optimal performance recovered.



ENHANCING CLOSED-LOOP PERFORMANCE

e Relaxing switching rules:

M (x(t)), 0 <t<min{T* Ty}
b(x(t)), t > min{T™, Ty}

[ *=inf{T* > 0: V(2™ (T*)) = ¢z} ]

[Tstup{TizO:V(xM(Ti)) = 0, ’izl,---,N<oo}]

No switching
o Allow increases in V(2 (t)). in scheme 2

Bounded controller’s
Stability region

Q(Unmay)

-

Switching
in scheme 1

¢ Stability safeguards: switch if
. . Switching
> Trajectory hits 0Q2(tmqq ), Or inscheme 2

> V(xz(t)) changes sign N -

times.

¢ Greater flexibility for MPC im-
—— MPC - scheme 2

plement ation. V(X)=Co —— MPC - scheme 1
- — - Bounded control - scheme 2
- - - Bounded control - scheme 1



SWITCHING WITH “STABLE” MPC FORMULATIONS
e MPC with stability constraints:

T
ril(lr)l [t (7 (5)Qx(s) + u” (s)Ru(s))ds
s.t. (t) = Ax(t) + Bu(t), x(0) = xo

u() c Ua
S

\ 2(T) QTerminal /

e Feasibility-based switching:

Bounded controller’s
Stability region
Q(umax)

-

b(z(t), 0 <t<T*

uo (2(t)) =
M(z(t)), t>T*
Check MPC feasibility

o T* : earliest time for which Cte
"No switching"

MPC yields feasible solution.

Check MPC feasibility

¢ Frequent off-line supervisory
"Switch"

“checks” of MPC feasibility.
V(X)=Crax — Bounded Control

— MPC



NUMERICAL EXAMPLE

e State space description:

, 0.5 0.25 1 0
xr = xr + (7
0.5 1 0 1

¢ Origin unstable (two real positive eigenvalues).
o Input constraints: w; € [—5,5], i =1,2.

e Bounded controller: _ i}
1.03 0.306

0.306 1.18
o Stability region: ' (ATP + PA)x < 10||B* Px||

o Lyapunov function: V = 2! Pz, P =

e Model predictive controller:

¢ Performance index:

t+T
[ J = /t [HZC(T)HQQ - ||U(7')H2R + HU(T)H%} dT]

Q=ql >0, R=rI>0, S=sI>0




CLOSED-LOOP SIMULATION RESULTS
“Feasibility-based switching”
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x Input & state profiles * Closed-loop trajectories

ox1(0)=[2 -2 €eQ = MPC (q=1; r =4; T = 1) feasible

o x2(0) =[5 —5]1€Q = MPC (gq=1; r =4; T =1) NOT feasible
*x Use bounded controller *x Switch to MPC at t = 0.6



STATE ESTIMATION & OUTPUT FEEDBACK CONTROL

e Lack of full state measurements:

¢ Inaccessibility of some process variables for measurement.

¢ Estimation of states from measured outputs necessary.

e Main objectives for output feedback controller design:

¢ To establish guaranteed stability from an explicitly characterized set of
initial conditions:
> Design technique for the state estimator.

> Devise switching rules, based on available state measurements.

¢ Controlled rate of convergence of state estimation error.

e Approach for output feedback controller design:

¢ Relies on separation principle: combination of

> State feedback controllers.

> State observers.



DESIGN OF STATE OBSERVER

e State space description of estimator:

‘ #(t) = Ai(t)+ Bu(t) + L(y — C%)

¢ Z: state estimate. ¢ L: Observer gain matrix.

e Structural features:
¢ Observer pole placement:

> Enforce desired decay of estimation error

¢ Effect of observer peaking eliminated through:
> Input saturation (indirect).
> Estimate-saturation (direct)(e.g., El-Farra & Christofides, IJC, 2001).
e Closed-loop analysis:

o Fall back (bounded controller) robust to a certain allowable error.

¢ For a given choice of initial conditions:
> State estimator designed to force error under the allowable error.
> Switching laws, based on the state estimates, for “safe” MPC

implementation.



STATE ESTIMATION & OUTPUT FEEDBACK CONTROL

e Practical implications:

¢ Any other estimation scheme, such as Moving Horizon Estimation

(MHE), can be used.

¢ Requires a transparent relationship between error decay and estimator

parameters.

¢ MPC implemented in a region where the fall back controller can step in

any time to rescue stability.

State feedback
Q (Umax)

—

Output feedback
P(L)c Q
L, <L,

Output feedback
D(L)c Q
L, > L,



OUTPUT FEEDBACK IMPLEMENTATION OF SWITCHING
(Mhaskar, El-Farra & Christofides, AIChE J., to appear)

e Bounded controller design
(u=—k(x)LysV, QtUmaz))-

e State observer design VPG feasihle Q(Una)

(given €, C €2, compute L). Switch to MP

e Estimate ’safe’ region
(given z € Qs = x € Q).

™
o Initialize: #(0) € Qy, u(0) = b(2(0)).

Switching surfac
Qs

o After z enters ‘safe’ region, (), check
feasibility of MPC & implement if - State estimate traject

V(Z) < 0 else keep bounded controller — State trajectory

active.



NONLINEAR SYSTEMS WITH INPUT CONSTRAINTS

e State—space description:

o x(t) € IR™ : state vector o u(t) ed C IR™ : control input
o U C IR™: compact & convex o ¢ = (0 € interior of U

o (0, 0) an equilibrium point

e Stabilization of origin under constraints



NONLINEAR MPC: IMPLEMENTATION ISSUES

e Optimization problem non-convex:

¢ Does not reduce to a Quadratic Program.

¢ Possibility of multiple, local optima.

¢ Optimization problem hard to solve (e.g., algorithm failure).
¢ Stability requirements harder to implement.

¢ Difficult to obtain solution within “reasonable” time.

e Lack of explicit characterization of stability region:
¢ Extensive closed-loop simulations.

¢ Restrict implementation to small neighborhoods.



BOUNDED LYAPUNOV-BASED CONTROL

e Explicit bounded nonlinear control law:

u = —k(x, Umaz)(LaV)?

e Region of guaranteed closed-loop stability:

[ Qumaz) = {z€R": V() < cmast j

¢ Region of invariance:x(0) € Q = z(t) e Q C DVt > 0.
¢ Larger estimates using a combination of several Lyapunov functions.

¢ Other Lyapunov—based bounded control designs can be used.



HYBRID PREDICTIVE CONTROL STRUCTURE
(El-Farra, Mhaskar & Christofides, IJRNC, to appear)

Supervisory layer

Switching logic

e =D x(t)
"Fallback contollers” \/
IQl(u ) E
E \&\\\*Q B ded E~\ / Pegc;frns_ance
A é"z:@i%o v controlier : TN opjectives
E 1 1 : \\
S ! T S
(5 e Hesgng i T I e -
EQZ (u ) . ? E Linear/Nonlinear
o MPC
b*\\Q\Q Bounded e
<—i— é"z:é'%o v controlier [
_Qn_(‘_{m__)__________i] _____
[ x(t) = f(x(D) + g(x(¥) u() ]
U< Umex |
Constrained Nonlinear Plant
e Hierarchical control structure
o Plant level o Control level ¢ Supervisory level

e Overall structure independent of specific MPC algorithm used:

¢ Could use linear /nonlinear MPC with or without stability constraints.



STABILITY-BASED CONTROLLER SWITCHING

e Switching logic:

¢ Initially implement MPC,
z(0) € Qi (Umaz)-

¢ Monitor temporal evolution
of Vi (M (¢)).

¢ Switch to bounded controller
only if Vi, (2™ (t)) starts to in-

crease.

V., (X(T)>0

"Switch"

—e MPC
——e& Bounded control



PRACTICAL IMPLEMENTATION

e A “typical” predictive control design:

¢ Nonlinear process model:

T = f(z) +g(z)u

Uyin < Ui < U,

min mazx
¢ Linear representation:
= Az + Bu
Unnin < Wi < Upgg
> Linearization > Model identification
(around desired steady-state) (e.g., through step tests)

o Use of computationally efficient linear MPC (QP) algorithms.

¢ No closed-loop stability guarantees for nonlinear system.
e Practical value of the hybrid control structure:

¢ Provides stability guarantees through fall-back controllers.

¢ Emntails no modifications in existing predictive controller design.



APPLICATION TO A CHEMICAL REACTOR

e Process dynamic model:

—F
: F e
Ca = 7(Cao—Ca) - koe B1R Cy
—F
: F —AH g UA
Tr = —(Tao—Tr)+ ( )koeRTR Ca+ (Te — Tr)
V PCp pVe,

¢ Multiple steady—states.

¢ Control objective:

> Stabilization at open—loop unstable equilibrium point,
(Cas, Ts) = (0.52 mol/L, 398 K).

¢ Manipulated input: v =T, € [275, 370] .



CONTROLLER DESIGN

e Model predictive controller:

¢ Performance index:

t+T
[ J = /t [HZC(T)HEQ -+ ||u(7')”2R + HU(T)H%] de

Q=ql >0 R=rI>0,S=s]>0

¢ Prediction model:

r = Ax+ Bu

> (A, B) from linearizing the nonlinear model around (C'sg, T5).

o Terminal equality constraint: z(t +T) = 0.

e Family of bounded controllers:
¢ Designed using a normal form representation.

o Several Lyapunov functions: V, = ¢ Pé, k=1,2,3,4.

4
¢ Stability region: €2 = Uﬂk
k=1



CLOSED-LOOP SIMULATION RESULTS

“Stability-based switching”
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o MPC with T = 0.25; MPC/BC(4) switching (¢ = 0.4).
o MPC with T'= 0.5; MPC/BC(3) switching (¢t = 1.9).
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APPLICATION TO A CONTINUOUS CRYSTALLIZER

e Crystallizer moments model:

tg = —xo+ (1 —x3)Daexp (Ty—f)
r1 = —x1+yxo
Tro = —X2+yr
T3 = —X3+ Yyro
l—y—(a— T U

¢ Unstable equilibrium point surrounded by stable limit cycle.

¢ Control objective:

> Stabilization at unstable equilibrium point.
> Input constraints: wu € [—1,1].

e Bounded controller: designed using normal form.

e Predictive controller: linear prediction model with stability constraints.
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- CLOSED-LOOP SIMULATION RESULTS
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TUNING CLASSICAL CONTROLLERS USING NONLINEAR
CONTROL THEORY

e Proportional-Integral-Derivative (PID) control:

Tuning Linear
Methods Model
ey Ty 4

ﬂf © & PIDController |— |  Process >

s

e “Hasy” to use and implement:

¢ Tuning rules based on linear process models.

e Do not account for

¢ Process nonlinearities, uncertainties, constraints etc.

e Extensive re-tuning / poor performance.



TUNING CLASSICAL CONTROLLERS USING NONLINEAR
CONTROL THEORY

e Nonlinear controllers:

ysp I y

———! Nonlinear Contraller ———{ ~ Process >

?

¢ Handle process uncertainties/time delays/state estimation/...

¢ Provide rigorous results and analysis.
¢ Require better understanding of the process (nonlinear models).

¢ Implementation requires redesign of existing control hardware.

e (Gap between
> Nonlinear control theory tools.

> Process control practice (K., 7, 7q)-

( Use/develop nonlinear control tools for PID controller tuning J




TUNING METHOD

e Tuning method:

Tuning Nonlinear
guidelines Controller
oy Ty 4
Process y

&? € & PID Controller u—> x=f(x)+g(x)u >

y=h(x)

¢ Design a nonlinear controller that accounts for the complex process

dynamics.

¢ Compute, but not implement, the control action as prescribed by the

nonlinear controller.

¢ Set up and solve an optimization problem:

> The objective function ‘measures’ the difference between the control
action of the PID and the nonlinear controller.
> The decision variables are the PID controller parameters.



APPLICATION TO A NONLINEAR PROCESS MODEL

e Process description:

3 —FB;

dT F (—AH,) Q

C L (T -T ke RT C

dt V( A0 )+ z:zl PCp 0e AT pc,V
dC F A

A

oA D _ _ e RT

g V(CAO Ca) ;217%06 Ca

o Three steady-states (two locally asymptotically stable and one
unstable).

¢ Stabilize the reactor at the open—loop unstable steady—state using the

jacket temperature as the manipulated input.



CLOSED-LOOP SIMULATION RESULTS

“Nonlinear-control based PID tuning”

540 T T T T 360
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o (a) Input & (b) state profiles.
¢ The nonlinear controller is only designed, not implemented.

¢ PID controller designed to ‘emulate’ the action of the nonlinear controller.



CONCLUSIONS

Issues in Process Control:

¢ Nonlinearities, uncertainties, constraints and state estimation.
Integrate tools from nonlinear control theory with existing process control
practice.

¢ Safety—met for predictive control implementation.

¢ Improved tuning of classical controllers.

Practical implementation:
¢ Software: Direct incorporation into existing MPC packages.

¢ Hardware: Does not require redesigning existing classical control
hardware.
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