
Modeling and control of crystal shape in continuous
protein crystallization

Joseph Sang-Il Kwon a, Michael Nayhouse a, Panagiotis D. Christofides a,b,
Gerassimos Orkoulas a,n

a Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
b Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA

H I G H L I G H T S

� Kinetic Monte Carlo simulation of protein crystal growth.
� Approximate model for evolution of protein crystal shape in continuous crystallization.
� Model predictive control of protein crystal shape in a continuous crystallizer.
� Disturbance handling using model predictive control.

a r t i c l e i n f o

Article history:
Received 2 October 2013
Received in revised form
25 November 2013
Accepted 2 December 2013
Available online 13 December 2013

Keywords:
Protein crystallization
Continuous process
Kinetic Monte Carlo simulation
Model predictive control
Process control
Process optimization

a b s t r a c t

In this work, a continuous crystallization process with a fines trap is modeled in an effort to produce
tetragonal hen-egg-white (HEW) lysozyme crystals with a desired shape distribution. The crystal shape
of tetragonal lysozyme crystals is defined by the aspect ratio of the crystal heights in the direction of the
(110) and (101) faces. A kinetic Monte Carlo (kMC) simulation is used to model the crystal nucleation,
growth, and dissolution through a fines trap in a continuous crystallization process. Specifically, the
crystal growth processes are simulated through adsorption, desorption, and migration mechanisms, and
the crystal growth rates are calibrated through experimental data (Durbin and Feher, 1986). Additionally,
a nucleation rate expression is developed based on the results from an experimental work (Galkin and
Vekilov, 2001) to simulate the crystals nucleated at different times. Then, the method of moments is used
to approximate the dominant behavior of a population balance equation (PBE) describing the evolution
of the crystal volume distribution through the three leading moments. The moment model is used, along
with solute mass and energy balance equations, to design a model predictive controller (MPC), which
allows for the crystallizer to produce crystals with a desired shape distribution. In the proposed MPC, the
jacket temperature is manipulated to appropriately suppress the influence of undesired effects such as
process disturbances and measurement noise, while handling significant changes in the set-point value.
Furthermore, it is demonstrated that a continuous process with a fines trap can produce crystals with a
low polydispersity.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Protein crystallization is essential in the context of separation
and purification processes in the pharmaceutical industry. More
than 90% of all active pharmaceutical ingredients (API) are in the
crystalline form of organic compounds. Depending on the final
dosage form (e.g., tablet, capsule, liquids, syrups, creams and
injections), the production of API crystals with desired size and

shape distributions is required for bioavailability and stability of
the final dosage forms, because size and shape distributions
significantly influence the physical properties of the crystalline
APIs (e.g., dissolution rates in the blood and melting points).
In particular, when the products are off the desired specification,
additional downstream processes (e.g., filtration, drying, and
granulation) are needed. Therefore, the modeling of the crystal-
lization process in an effort to control the size and shape
distributions of crystals produced from the system is necessary
to facilitate the further development of pharmaceutical processes.

Over the last few decades, batch processes have received
dominant attention in the pharmaceutical industry. In batch
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operations, a drug's APIs are synthesized and then carried to other
facilities where they are turned into a large amount of a desired
final dosage form. Although the research and development period
plays a major role in the time-to-market, the inefficiency owing to
the distant nature of facilities involved in the crystallization
processes will cause additional delay in the time-to-market and
it will be handled through a series of continuous crystallizers.
Additionally, due to the nature of a batch process, there are a
number of issues that need to be addressed such as batch-to-batch
variability, high equipment and operational costs, and relatively
long separation time of the APIs (Lawton et al., 2009).

Recently, continuous crystallization, which is able to consis-
tently produce crystals with desired size and shape distributions
starting from fresh raw materials, is receiving growing attention in
the pharmaceutical industry. Specifically, once a steady-state has
been achieved in a continuous crystallizer, all crystals are pro-
duced under a uniform supersaturation level, which leads to
greater reproducibility and controllability of major characteristics
of crystals such as size and shape distributions. As a result, the
number of downstream operations required to amend crystals
with undesired size and shape distributions (e.g., granulation for
the solid dosage forms) may be reduced.

Consequently, using a continuous manufacturing process can
stimulate the growth of the pharmaceutical industry as it may
reduce the size of production facilities, operating costs, waste,
energy consumption, and raw material usage considerably. More-
over, the reproducibility and controllability of the APIs in the final
dosage form can be improved.

Motivated by above, researchers have made notable advance-
ments in the context of fundamental understanding and modeling
of protein crystallization for crystal nucleation (Galkin and Vekilov,
1999; Pusey and Nadarajah, 2002) and crystal growth (Durbin and
Feher, 1986; Forsythe et al., 1999; Kurihara et al., 1996). Specifi-
cally, kinetic Monte Carlo simulation methods (kMC) (Bortz et al.,
1975; Dai et al., 2005, 2008; Gillespie, 1976, 1977, 1978, 1992,
2001, 2007; Rathinam et al., 2003; Reese et al., 2001; Snyder et al.,
2005) have been widely applied to simulate crystal growth
including the previous work of our group (Nayhouse et al., 2013,
Kwon et al., 2013a, 2013b, in press) where we modeled crystal
growth in batch processes. In the present work, the kMC metho-
dology is further developed to model a continuous protein crystal-
lization process, and implemented in the way described in
Christofides et al. (2008) using the rate equations on the crystal
surface reaction initially developed by Durbin and Feher (1991).

Then, a population balance model for a continuous crystal-
lization process with a fines trap is presented. In practice, the
complexity in a population balance model usually leads to an
implementation issue with the controller design (Chiu and
Christofides, 1999). Therefore, the method of moments is used to
derive reduced-order ordinary differential equation (ODE) models
in time, which are used to approximate the dominant behavior of
the evolution of crystal volume distribution in a continuous
crystallizer (El-Farra et al., 2001; Kalani and Christofides, 2002).
In order to close the moment model, a normal distribution
assumption is used to approximate the crystal volume distribu-
tion. In addition to a set of polynomials that describes the
dependence of crystal growth of each face on a supersaturation
level, the mass and energy balance equations and the moment
models are considered to design a model predictive control (MPC)
system, which is used to produce crystals with a desired shape
distribution. To improve the controller performance, an advanced
real-time monitoring technique is necessary in practice, because
the damage is irreversible if the produced crystals are off the
desired specification at the outlet of the process. Motivated by this,
the measurements of crystals through the use of focused
beam reflectance measurement (FBRM) and process vision and

measurement (PVM) (Kougoulos et al., 2005) are modeled as
measurement system feedback in real time from the kMC simula-
tions, which is treated as the physical crystallization process.

The manuscript is organized as follows. First, we will introduce
a continuous crystallization process with a fines trap. Then, the
crystallizer rate equations used for the implementation of the kMC
simulation method will be introduced. Next, a set of mass and
energy balances will be presented along with a PBM of the crystal
volume distribution, and the method of moment will be used to
construct a reduced-order model for the design of a model
predictive controller, which will drive the shape distribution of
crystal population to a desired value. Finally, we will finish with
closed-loop simulation results under the proposed MPC, followed
by a short conclusion.

2. Process descriptions

2.1. Continuous crystallizers

There are two types of the most widely used continuous
crystallizers in the pharmaceutical industry: mixed suspension
mixed product removal (MSMPR) and plug flow reactors (PFR).
The choice of which to use is mainly determined by the character-
istics of the process, as MSMPR is generally preferred for low
conversions and longer residence times, while PFR is preferred for
higher conversions with shorter residence times. In general,
MSMPR is preferred because it is relatively similar to the conven-
tional batch process (Chen et al., 2011).

The low conversion in MSMPR can be improved by strategies
such as the addition of a recycle stream or the addition of a fines
trap. More specifically, an increase in yield was observed by
Alvarez et al. (2011) and Wong et al. (2012) through the imple-
mentation of recycle streams to MSMPR systems for the crystal-
lization of cyclosporine. Additionally, it was demonstrated that the
multistage MSMPR approach was simplified into a single-stage
MSMPR by implementing a recycle stream and a fines trap (Griffin
et al., 2010).

A fines trap is one of the most widely used product classifica-
tion processes, and it can be established, first of all, by shielding a
part of a mixed crystallizer with a baffle as is shown in Fig. 1. As a
result, the circulation of the continuous phase through the baffled
region is typically slow, and larger crystals sink to the bottom of
crystallizer while small crystal fines float on the top where a
stream is drawn off and sent to the fines trap where small crystals
are dissolved and are recycled back to the crystallizer. By manip-
ulating the stirrer speed in the baffled continuous crystallizer, we
can control the maximum particle size Lmax that will enter the

Fig. 1. MSMPR crystallizer used in this work.
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fines trap stream. Specifically, while we can easily control the flow
rate Q of a stream to the crystallizer, it is rather difficult to model
and control the motion of particles which is under the influence of
shear forces induced by agitation. In this work, we assumed that
the extent of aggregation is negligible because the residence time
of a continuous process is typically 1 or 2 h, and thus the average
crystal size of the final products is not large enough to get
influenced by the shear force due to stirring significantly. Further-
more, a fines trap can considerably reduce the number of crystals,
and thus it lowers the collision rates between crystals.

3. Description and modeling of continuous crystallization
process

3.1. Crystal nucleation

In this work, only primary nucleation of HEW lysozyme is
considered. Motivated by Nanev and Tsekova (2000), Suzuki et al.
(1994) and Kwon et al. (2013b), we assumed that crystals are
nucleated with infinitesimal size (i.e., V¼0). The subsequent fate
of the nucleus whether to grow or dissolve into the continuous
phase is determined by the amount of the free energy required for
the formation of the crystal structure versus the free energy
required for the formation of the surface adjacent to the contin-
uous phase. We defined the supersaturation s¼ lnðC=sÞ as the
difference in chemical potential between the current state, C (mg/
mL), and the saturated state, s (mg/mL). The nucleation rate at
pH¼4.5 and 4%(w/v) NaCl, BðsÞ, is obtained from Galkin and
Vekilov (2001):

BðsÞ ¼
0:041sþ0:063 for sZ3:11
8:0� 10�8expð4:725sÞ for so3:11

(
ð1Þ

with units ðcm�3 s�1Þ. Also, the solubility is an explicit function of
temperature T (1C) and is computed using the following expression
(Cacioppo et al., 1991; Cacioppo and Pusey, 1991):

sðTÞ ¼ 2:88� 10�4 T3�1:65� 10�3 T2þ4:62� 10�2 Tþ6:01� 10�1:

ð2Þ

3.2. Modeling of crystal growth and dissolution

In most crystallization processes, the solute molecules move
from the bulk solution to the crystal surface and then they are
converted into the crystalline form through surface reaction. The
diffusion coefficient is usually high in crystallization systems, and
thus the crystal growth is primarily controlled by the surface
reaction (reaction-limited). As a result, the growth rate becomes
size-independent, and it is usually assumed that the dissolution
rate is also size-independent because the dissolution process is the
reverse of the growth process (Majumder and Nagy, 2013).

For the purpose of comparison, the crystal is assumed to be
equidimensional. As is given by Schmidt (2005), the time neces-
sary to grow a lysozyme crystal from R0¼1 to R¼ 10 μm, assuming
that the growth is reaction-limited, can be calculated as follows:

trxn ¼
ρB

k″CAMB
ðR�R0Þ

Similarly, the time necessary to grow a lysozyme crystal from R0 to
R, assuming that the growth is mass-transfer-limited, is

tmt ¼
ρB

2DAMBCA
ðR2�R2

0Þ

where k″ is the rate coefficient of surface reaction per unit area,
MB is the molecular weight of lysozyme, CA is the reactant
concentration, ρB is the density of a lysozyme crystal, and DA is

the diffusion coefficient. The value of DA is 105–106 cm2=s (Kim
and Myerson, 1996), and k″ can be considered as the growth rate of
the lysozyme crystal in this study, which is 0:1–1 μm=min. There-
fore, we can simply calculate tmt=trxn from the preceding equations
along with the approximated numbers for DA and k″ as follows:

tmt

trxn
¼ k″
2DA

ðRþR0Þ ð3Þ

where tmt=trxnffi10�11–10�13. Therefore, it is now apparent that
the crystal growth process is reaction-limited and thus is size-
independent, and so is the dissolution process.

3.3. Crystal growth

In kMC simulations, the protein crystals are very compact
without voids and overhangs due to the solid-on-solid model,
which is assumed in this work. Additionally, along with the
periodic boundary condition, we employed a square lattice model
of length and width N¼30 sites because no finite size effect is
observed (Ke et al., 1998). Additionally, the following rate equa-
tions are used to simulate the crystal growth mechanisms (Durbin
and Feher, 1991; Ke et al., 1998).

In Table 1, K þ
0 is the adsorption coefficient, i is the number of

adjacent neighbors, Epb is the average binding energy per bond,
and ϕ is the total binding energy when a molecule is fully
surrounded by neighbors (i.e., when i¼4). Additionally, the fact
that the migration rate is higher than the desorption rate is
accounted for by multiplying an exponential factor into the
desorption rate expression (Ke et al., 1998). To evaluate a set of
Epb and ϕ values for the (110) and (101) faces, open-loop kMC
simulations are executed by adjusting model parameters to make
the difference between the growth rates in the simulations and
the experiments from literature very small.

3.4. Mass and energy balances

3.4.1. Mass balance
A constant crystal shape factor has been widely used to model

three-dimensional (3-D) crystal growth, however, this factor
usually depends on the supersaturation level in practice. The mass
balance is developed by modeling the crystal shape as an aspect
ratio of crystal heights into (110) and (101) directions. A variety of
shape descriptors are available such as roundedness, 2-D area,
convexity, length/width, and aspect ratio. Therefore, a careful
selection is needed in order to quantify the crystal shape and
use it in the controller design (Hentschel and Page, 2006;
Pourghahramani and Forssberg, 2005).

The inlet and outlet flows and the fines trap, which are key
components in the continuous crystallizer, are considered in the
mass balance for the protein solute in the continuous phase.
Therefore, the amount of the protein solute, C, that remains in
the continuous phase can be approximated through the following

Table 1
Surface rate equations used to simulate the crystal
growth process.

Surface reaction Rate equations

Adsorption ra: K þ
0 expðsÞ

Desorption rd(i): K þ
0 exp

ϕ

kBT
� i

Epb
kBT

� �
Migration rm(i): K þ

0 exp
ϕ

kBT
� i

Epb
kBT

þ Epb
2kBT

� �
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equation:

dC
dt

¼ � ρc

VMSMPR

dVcrystal

dt|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
removed by crystals

þ C0

τ|{z}
incoming flow

þ ρc

VMSMPR

dV fines

dt|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
added by fines trap

� C
τ|{z}

outgoing flow

ð4Þ

where VMSMPR is the crystallizer volume, τ is the residence time of
the crystallizer, and Vcrystal is the total volume of crystals removed
from the continuous phase considering the geometry of lysozyme
crystals. In the kMC simulation, we have a constraint that the
volume of crystals removed through the fines trap should not
exceed 30% of the crystals leaving through the product stream.
Initially, the residence time of a crystal is determined by the
residence time distribution with a mean residence time of 1 hour.
Then, this crystal will be checked every second and, when its size
is less than the cut-off size, it will be removed through the fines
trap with a probability of 50% (i.e., accounting for the efficiency of
the fines trap). Therefore, the residence time is not explicitly
considered for the operation of fines trap in the kMC simulations.
However, in the controller, the moment models are solved in order
to approximate the crystal volume distribution using the same
residence time for both the product stream and the fines trap
stream. We assume that the fines trap remove crystals of size
Vmð ¼ 8 μm3Þ or smaller. To this end, V fines is newly introduced to
indicate the total volume of crystals passed through the fines trap
and dissolved. In Eq. (4), the first term represents the depletion of
the solute concentration in the continuous phase due to crystal-
lization. Then, the second and third terms stand for the incoming
flow of fresh solution to the crystallizer and the incoming flow of a
particle-free solution from the fines trap, respectively. The last
term indicates the outflow from the crystallizer.

3.4.2. Energy balance
The energy balance accounts for the temperature change due to

the enthalpy of crystallization, the heat transfer by manipulating
the jacket temperature, and the heat transported in/out along the
inflow/outflow as follows:

dT
dt

¼ � ρcΔHc

ρCpVMSMPR

dVcrystal

dt
� UcAc

ρCpVMSMPR
ðT�TjÞþ

Tin�T
τ

ð5Þ

where T is the temperature inside the crystallizer, Tin is the inflow
temperature, and Tj is the jacket temperature, ρc ¼ 1400 mg=cm3

is the crystal density, ΔHc ¼ �44:5 kJ=kg is the enthalpy of
crystallization, ρ¼ ð1000þCÞ mg/cm3 is the continuous phase
solution density, Cp¼4.13 kJ/K kg is the specific heat capacity,
VMSMPR ¼ 1 L is the continuous crystallizer volume, Ac¼0.25 m2 is
the surface area of crystallizer wall, and Uc¼500 kJ/m2 h K is the
heat transfer coefficient of crystallizer wall, which is usually
smaller than that of a batch process. In practice, an appropriate
cooling process is placed after the fines trap so that the changes in
the crystallizer temperature caused by those streams are
negligible.

In the kMC simulation, the residence time of a crystal is
assumed to be distributed exponentially (Levenspiel, 1998) as
follows:

expð�Tr=τÞ ¼ RN

where Tr is the residence time of a crystal in the crystallizer, τ is
the mean residence time, and RN is the random number generated
between 0 and 1.

3.5. On-line imaging techniques for real-time measurement

As is mentioned previously, crystal shape can significantly
affect the bioavailability of pharmaceutical products. Regardless,
the direct characterization of particle shape has been limited to
off-line techniques. For example, the PharmaVision System 830

(PVS830) has been widely used for the characterization of chord
length distribution (CLD) and crystal shape distribution (CSD). To
perform the image analysis, a sample has to be collected using a
pipette and quickly placed on a sample tray under a high-speed
video camera. However, this imaging technique has a number of
issues. First, it cannot take images of particles as they actually exist
in the crystallizer. Second, the sampling may alter the system
condition and it leads to undesired dissolution, growth, and
agglomeration of particles. Third, in the course of sample prepara-
tion through dilution, cooling, or heating, the particles may be
significantly damaged before they are measured.

Motivated by the above reasons, new on-line in-process ima-
ging techniques have been developed and released to the market
such as PVM developed by Lasentec, which has been widely used
to capture the size and shape distributions of crystals in crystal-
lization processes. The PVM produces images of crystals which can
be viewed through an external window. Through the PVM, the
measurements of both CLD and CSD are available by taking images
of a number of crystals. Moreover, images taken using PVM can be
quickly verified through the comparison with other analytical
equipments such as FBRM which is another widely used equip-
ment using a focused beam of laser light to scan the size and shape
of particles. As this light scans across those particles passing in
front of the probe window, light is scattered in all directions and
the light scattered back to the probe is used to calculate CLD and
the number of crystals at every 30–40 s. Overall, PVM along with
Lasentec FBRM provides new insight into crystallization processes
by quantifying CLD, CSD, and crystal count. To this end, a new
software program is developed to link PVM images with FBRM
measurements (Calderon De Anda et al., 2005a, 2005b).

We note that the CLD and CSD are also influenced by system
disturbances (i.e., particle orientation and noise in the system).
Reflecting the presence of uncertainty in the kMC simulation, a
noise is introduced to the measurement of CLD and CSD to account
for the lack of knowledge of the direct measurements of actual
particle distributions in practice. The noise is set to be 20% of its
nominal value. In other words, when the measurements are sent
to controller, they can be distorted up to 20% of their actual values.
To obtain more precise measurements, the imaging techniques
should be robust to the undesired noises present in the system.
Furthermore, the development of high speed cameras can clarify
the images which are sometimes poor due to the inconsistent
distances of particles from the lens of cameras. Additionally, the
high speed camera allows for a series of successive images of a
particle with different orientations.

4. Population balance modeling

4.1. PBE of crystal volume distribution

In this section, we describe the profile of the crystal volume
distribution with time in a continuous crystallizer with a fines trap
accounting for nucleation and crystal growth as follows:

∂nðV ; tÞ
∂t

þGvol
∂nðV ; tÞ

∂V
¼ �nðV ; tÞ

τ|fflfflffl{zfflfflffl}
outflow

�hðVÞnðV ; tÞ
τ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

fines trap

þδðV�V0ÞBðsÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
nucleation

ð6Þ

where V denotes the crystal volume, t is the time, τ is the
residence time for the fines trap, nðV ; tÞ denotes the number of
crystals with volume V at time t, BðsÞ is the nucleation rate, and
dV=dt is the volumetric growth rate of crystals. The selection
function for fines removal, hðV Þ, is shown below:

hðV Þ ¼
1 for VrVm

0 for V4Vm

(
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where Vm is the cut-off size of a fines trap. Approximating the
total volume of the entire lysozyme crystal population as VðtÞ �M0

ðtÞ〈h110ðtÞ〉2〈h101ðtÞ〉, we can compute the volume growth rate Gvol

by calculating the volumetric growth rate of crystals, dV/dt,
through the following equation:

Gvol ¼
dVðtÞ
dt

¼ dM0ðtÞ〈h110ðtÞ〉2〈h101ðtÞ〉
dt

¼M0ðtÞ 2
d〈h110〉

dt
〈h110ðtÞ〉〈h101ðtÞ〉þ

d〈h101〉

dt
〈h110ðtÞ〉2

� �
þdM0

dt
〈VðtÞ〉

ð7Þ
where the right hand side is readily available from the measure-
ments along with Eqs. (18) and (19), which will be discussed in
Section 5.1. In the kMC simulation, which models an actual
crystallizer, dVcrystal=dt and dV fines=dt are computed by summing
the total volume of crystals changed/removed over a sampling
time. Furthermore, dV fines=dt is approximated by summing the
number of crystals whose sizes are less than the cut-off size
because the statistics (e.g., mean and standard deviation) of the
crystal volume distribution is available from the measurements
along with Eqs. (13) and (14). Additionally, Eq. (6) can be rewritten
with the addition of an appropriate boundary condition as is
shown below:

∂nðV ; tÞ
∂t

þnðV ; tÞ
τ

þhðV ÞnðV ; tÞ
τ

þGvol
∂nðV ; tÞ

∂V
¼ 0 ð8Þ

nð0; tÞ ¼ BðsÞ
Gvol

Further details regarding the derivation of the boundary condition
can be found in our previous work (Kwon et al., 2013b).

4.2. Moment models

The numerical computation of the crystal volume distribu-
tion using Eq. (6) is computationally expensive and not readily

accessible in general because of the complexity in the PBE. To deal
with this issue, the method of moments is applied to Eq. (6) in
order to derive moment models. Specifically, the jth moment is
defined as follows:

Mj ¼
Z 1

o
VjnðV ; tÞ dV ð9Þ

Along with the balance equations of Eqs. (4) and (5), the three
leading moments are used to approximate the dominant behavior
of the nucleation and crystal growth in a continuous crystallizer
with a fine trap. For more details regarding the derivation of the
following three moment models, the reader may want to refer to
our earlier work (Kwon et al., 2013b).

Zeroth moment: It describes the rate of change of the total
number of crystals with time:

dM0

dt
¼ BðsÞ�M0

τ
�
Z Vm

0

nðV ; tÞ
τ

dV ð10Þ

where BðsÞ is justified by the boundary condition of Eq. (8). On the
right hand side, the termwith the integral indicates the number of
crystals below the cut-off size of the fine trap and it can be
evaluated from the measurement of the crystals where the
statistics of size and shape distributions are available (e.g., mean
and standard deviation).

First moment: It describes the rate of change in the total crystal
volume with time:

dM1

dt
¼ GvolM0�

M1

τ
�
Z Vm

0
V
nðV ; tÞ
τ

dV ð11Þ

Second moment: It describes the rate of change in the volume
square of the entire crystal population with time:

dM2

dt
¼ 2GvolM1�

M2

τ
�
Z Vm

0
V2nðV ; tÞ

τ
dV ð12Þ

When a fines trap is not used (i.e., hðVÞ ¼ 0), the first three
moment equations and the mass and energy balance equations,
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Fig. 2. Profiles of the open-loop simulation of number of crystals, crystallizer temperature, protein solute concentration, and average crystal shape for the crystallization of
tetragonal lysozyme protein at pH¼4.5. (a) Number of crystals (M0), (b) temperature and concentration and (c) crystal shape (α).
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Eqs. (4) and (5), constitute a closed set of differential equations.
However, the set of moment models above does not close owing to
the classification function, hðVÞ, for the fines trap. In order to close
the set of moment equations and the balance equations, nðV ; tÞ is
assumed to follow a normal distribution as follows:

nðV ; tÞ ¼ 1
sN

ffiffiffiffiffiffi
2π

p exp �ðV�μÞ2
2s2

N

 !
ð13Þ

where μ is the mean of crystal volume distribution, and sN is its
standard deviation. They can be linked to the first three moments
through the expressions below:

μ¼M1

M0
; sN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

M0
�μ2

s
ð14Þ

The volume distribution of crystals obtained from the kMC
simulations at t¼1 h has been presented in Fig. 5 verifying the
normal distribution assumption. We should note that the volume
distribution may show a biased bimodal behavior due to a burst of
nucleation at a higher supersaturation level, however the assump-
tion is still acceptable as it would not affect the controller
performance significantly. Using Eqs. (13) and (14), we can
numerically integrate the fines trap term in the moment models,
Eqs. (10)–(12).

5. Open-loop simulation results

Analytically solving the PBE for the profiles of the crystal shape
and size distributions is equivalent to executing multiple kMC
simulations over an infinite number of lattice sites along with the
consideration of balance equations. In this work, the kMC simula-
tion is further developed from the previous work (Kwon et al.,
2013b) to model a continuous crystallization along with the
dissolution of small crystal fines. In particular, N¼30 is used for
the number of lattice sites, because no finite size effect is observed
in the kMC simulations with lattice sites more than N¼30 by Ke
et al. (1998).

In Fig. 2, the profiles of the number of crystals (M0), the average
crystal shape 〈α〉, and the crystallizer temperature and the solute
concentration obtained from the moment models (cf. Eqs. (10)–
(12)), are compared with those of the kMC simulation. The number
of crystals increases in the beginning until it reaches a steady-state
because the simulation begins with a crystal-free solution. After-
ward, the variables remain constant reflecting the steady-state
operation of the continuous crystallizer. For example, the solute
concentration remains constant at 45 mg/mL. Overall, the result
obtained by the reduced moment models shows a very good
match with that of the kMC simulation.

Sometimes, highly oscillatory behavior takes place in the
crystallizer as a result of the competing interplay between the
nucleation and crystal growth. As is described in Chiu and
Christofides (1999, 2000), it is mainly caused by the nonlinearity
in the nucleation rate (i.e., exponential dependence on super-
saturation) as compared to that in the growth rate (i.e., linear
dependence on supersaturation) which causes the following
scenario: the amount of fines progressively decreases as the
supersaturation drops due to the consumption of protein solute
by the crystal growth as well as the nucleation. As a consequence,
the supersaturation level drops to a point where the nucleation
rate begins to drop drastically, and thus no further nucleation
occurs and the present small crystal fines grow into coarse
crystals. Then, the supersaturation level starts to build up due to
the absence of the nucleation until it reaches a point where a burst
in the nucleation occurs with the production of a large number of
fines. In this study, however, this oscillatory behavior of crystal

size, number of crystals, supersaturation level, and so on, is not
observed because the working range (e.g., supersaturation level) is
relatively high so that the nucleation rate shows a linear depen-
dence on the supersaturation level (cf. the regime where sZ3:11
in Eq. (1)).

In Fig. 3, ðϕ=kB; Epb=kBÞ110 ¼ ð1077:26K;227:10KÞ and ðϕ=kB;
Epb=kBÞ101 ¼ ð800:66K;241:65KÞ, and K þ

o ¼ 0:211 s�1 are used for
the open-loop simulation, and the crystal growth rates at 4%(w/v)
NaCl and pH¼4.5 have been compared along with the experi-
mental results (Durbin and Feher, 1986) at 3.5% and 5.0% NaCl,
respectively.

5.1. Modeling of crystal shape distribution from measurements

In kMC simulation, the 3-D crystal growth is modeled along the
two representing characteristic lengths, h110 and h101, as they are
shown in Fig. 4. Furthermore, the growth rates, G110ðsÞ and
G101ðsÞ, from Fig. 3 are approximated by the following polynomial
expressions as a function of supersaturation:

G110ðsÞ ¼ 0:1843� s3�1:1699� s2þ2:8885� s�2:5616

G101ðsÞ ¼ 0:1893� s3�1:2264� s2þ2:9887� s�2:5348 ð15Þ
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Fig. 3. The solid and dashed lines show the growth rates for the kMC model on the
(110) and (101) faces, respectively, at C¼45 mg/mL and 4% NaCl. The ð�Þ= (1)
represent the growth rates for (101) and (110) faces with 3.5% NaCl and the ð■Þ
and (□) represent the growth rates with 5% NaCl at pH¼4.6, which both are taken
from Durbin and Feher (1986).

Fig. 4. Geometry of tetragonal lysozyme crystal.
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with units μm=min. These polynomials show a very good fit with
an R2 value of nearly 1. Additionally, we note here that the growth
rate ratio, G110ðsÞ=G101ðsÞ, is equal to the aspect ratio between the
two heights at the steady-state.

The measurements of the mean of CLD, 〈h〉, and the mean of
CSD, 〈α〉, are available through the measurements of the crystals
inside the crystallizer. By the definition of CLD and CSD, we can
link 〈h〉 and 〈α〉 with 〈h110〉 and 〈h101〉 as follows:

〈α〉� 〈h110〉

〈h101〉

〈h110〉þ〈h101〉
2

� 〈h〉 ð16Þ

In general, it is nearly impossible to obtain the in-process online
measurements of the average crystal height in each direction,
〈h110〉 and 〈h101〉. Instead, we will approximate the average heights
on each face with the measurements of 〈h〉 and 〈α〉, which are
available through the PVM and FBRM:

〈h101〉¼
2〈h〉
〈h〉þ1

〈h110〉¼
2〈h〉〈α〉
〈h〉þ1

ð17Þ

We additionally note here that M0ðtÞ is the number of crystals
inside the crystallizer, whose measurement is also available
through the FBRM. Then, we will make predictions of the average
height of the crystal face (110) through the following ODE:

d〈h110〉
dt

¼ G110ðsÞ�
BðsÞVMSMPR〈h110ðtÞ〉

M0ðtÞ
ð18Þ

In the same manner, the average height of the crystal face (101)
can be predicted as follows:

d〈h101〉
dt

¼ G101ðsÞ�
BðsÞVMSMPR〈h101ðtÞ〉

M0ðtÞ
ð19Þ

By combining the equations above, we can predict the average
crystal shape in the following way:

〈α〉� 〈h110ðtÞ〉
〈h101ðtÞ〉

ð20Þ

6. Model predictive control of crystal shape in continuous
crystallization

6.1. Real-time feedback control of crystal shape

In order to control the crystal shape by manipulating the jacket
temperature in the crystallizer, a control scheme inspired by our
previous work (Kwon et al., in press, 2013b) is proposed in this
work. The incoming stream to the crystallizer is a crystal-free
solution with a protein solute concentration C¼45 mg/mL at a
flow rate of Q. At the same rate, the crystals are removed from the
crystallizer along the outgoing stream whose solute concentration
is identical to that in the continuous phase in the crystallizer. In
the simulation, it is assumed that CLD and CSD are measured in
real time and the measurements are used in order to estimate the
average aspect ratio 〈α〉¼ 〈h110〉=〈h101〉 as is shown in Eq. (20). This
can be achieved in practice using the aforementioned imaging
techniques such as PVM and FBRM. Additionally, a noise with 20%
fluctuation of the nominal value is introduced to account for the
incompleteness of the currently available measurement techni-
ques. Along with the noise, these measurements are sent to a
controller which computes the optimal jacket temperature to
control the crystal shape 〈α〉 to a desired value. For example, if a
higher aspect ratio (elongated prism) is desired, the controller
lowers the jacket temperature and thus the crystallizer tempera-
ture gets lowered to a moderate value where the production of a
desired shape is favored.

6.2. Model predictive formulation

A continuous crystallization process with a fines trap is
modeled through a set of moment models along with the mass
and energy balances in order to describe the evolution of the
crystal size and shape distributions with time. Through the
modeling of the crystallization process, we design a model pre-
dictive controller to regulate the shape and size distributions of
crystals nucleated along the process. Minimizing the sum of the
deviation of the average crystal aspect ratio and growth rate ratio
from a desired value, and penalizing the control action, is chosen
as a control objective, and the jacket temperature is used as the
manipulated input. In the continuous crystallizer, the proposed
control design can be applied to the case of multi-inputs
(Aldabaibeh et al., 2009; Weber et al., 2008; Müller et al., 2011;
Müller and Ulrich, 2011) such as the solute concentration in the
feed stream and the flow rate of the fines trap stream. Addition-
ally, the measurements of the solute concentration, CLD and CSD,
are assumed to be available at every sampling time (Δ¼40 s).
In particular, the uncertainty in the measurement of the solute
concentration is reflected in the simulation by introducing the
fluctuation of the concentration through the way described in our
earlier work (Kwon et al., 2013b).

In the control formulation, a couple of limitations are taken
into account in the form of constraints along with the mass and
energy balances (Eqs. (4) and (5)). A limit on the range of the
crystallizer temperature, 4 1CrTr25 1C, is imposed to prevent
lysozyme proteins from being damaged. Additionally, there is a
limit on the rate of the jacket temperature change, 2.0 1C/min, to
account for actuator limitations. The cost function of the optimal
control problem has penalties on both the deviation of 〈α〉 and the
G110=G101 from its desired crystal shape, αset, as well as penalty on
the control input. Furthermore, by adjusting the coefficients
between the penalties on the off-spec production of the crystal
shape and the control action, respectively, we can prevent unne-
cessarily aggressive control action. For example, when the penalty
on the off-spec of the crystal shape is more weighted, the control
action will be eager to reach a desired growth condition as soon as
possible, subject to other constraints. On the other hand, when the
penalty on the control actions is more weighted, the controller will
achieve the desired condition more slowly. Furthermore, we note
that the proposed control scheme can be easily extended to
consider the case of multiple inputs including the flow rate of
streams to the crystallizer and the fines trap. However, it is outside
the scope of this work and will be further considered with details
in the future. The MPC has the following form:

minimize
Tj;1 ;…;Tj;i ;…;Tj;p

∑
p

i ¼ 1
w1

〈αðtiÞ〉�αset

αset

� �2

þw2

G110ðsðtiÞÞ
G101ðsðtiÞÞ

�αset

αset

0
BB@

1
CCA

2

þw3
Tj;iþ1�Tj;i

Tj;iþ1

� �2

subject to 4 1CrTir25 1C
Tj;iþ1�Tj;i

Δ

����
����r2 1C=min

G110ðsÞ ¼ 0:1843� s3�1:1699� s2þ2:8885� s�2:5616

G101ðsÞ ¼ 0:1893� s3�1:2264� s2þ2:9887� s�2:5348

dM0

dt
¼ BðsÞ�M0

τ
�
Z Vm

0

nðV ; tÞ
τ

dV

dM1

dt
¼ GvolM0�

M1

τ
�
Z Vm

0
V
nðV ; tÞ
τ

dV

dM2

dt
¼ 2GvolM1�

M2

τ
�
Z Vm

0
V2nðV ; tÞ

τ
dV
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dC
dt

¼ � ρc

VMSMPR

dM1

dt
þC0

τ
þ ρc

VMSMPR

d
dt

Z Vm

0
V
nðV ; tÞ
τ

dV
� �

�C
τ

dT
dt

¼ � ρcΔHc

ρCpVMSMPR

dM1

dt
� UcAc

ρCpVMSMPR
ðT�TjÞþ

Tin�T
τ

d〈hj〉
dt

¼ GjðsÞ�
BðsÞVMSMPR〈hjðtÞ〉

M0ðtÞ

〈αðtÞ〉� 〈h110ðtÞ〉
〈h101ðtÞ〉

; s¼ lnðC=sÞ

i¼ 1;2;…; p and jAf110;101g ð21Þ
where p¼10 is the number of prediction steps, w1;w2;w3 are the
weighted coefficients, ti ¼ tþ iΔ is the time of the i th prediction
step, Tj;i is the jacket temperature of the i th prediction step,
respectively. At every sampling time, the first three moments and
the balance equations are updated along with the rate of change of
the average height on each face j (cf. Eqs. (18)–(20)). Then, the first
value of the set of optimal jacket temperatures ðTj;1; Tj;2;…; Tj;pÞ is
applied to the system over the following sampling time. Then, a
set of new measurements for CLD, CSD, protein solute concentra-
tion, and the number of crystals is collected from the kMC
simulation, and a new set of optimal jacket temperatures is
obtained by re-solving Eq. (21) based on the new measurements.
In the work by Shi et al. (2005), empirical expressions are used to
model the evolution of crystallization including both nucleation
and crystal growth. However, in this work, the kMC simulations
are used for more realistic modeling of a continuous crystallization
process based on the rate equations described in Table 1. Addi-
tionally, the readers who are interested in the robust model
predictive control of a crystallization process may want to refer
to Shi et al. (2006) and Chiu and Christofides (2000).

7. Continuous crystallization under closed-loop operation

In Fig. 3, it is shown that the range of growth rate ratio
G110ðsÞ=G101ðsÞ ranges from 0.7 to 1.1. Two desired crystal
morphologies, 〈α〉¼ 1:18 and 〈α〉¼ 0:86, are chosen as desired
set-points in the closed-loop simulations where the former and
the latter represent crystals with more elongated into (110) and
(101) directions, respectively.

Due to the dependency of the nucleation rate on the super-
saturation level, an abrupt change in the crystallizer temperature
in an effort to achieve a desired optimal temperature may result in
a biased nucleation. The biased nucleation is cumbersome,
because the crystals nucleated in the earlier stage can go through
undesired growth condition, and subsequently it leads to poor
controller performance. In our earlier work (Kwon et al., 2013a), it
was shown that when the desired shape is 〈α〉¼ 0:85 and the
initial temperature is T0 ¼ 5 1C, the corresponding optimal tem-
perature is �23.7 1C and the nucleation of �34% of the entire
crystal population occurs within the first �5% of the entire 4000 s
batch process. In a continuous crystallizer, however, the issue with
the biased nucleation can be avoided by simply operating a system
at a steady-state, where the nucleation rate remains constant.

A steady-state crystallizer temperature is determined by the
interplay among the inflow, crystallizer, and jacket temperatures
as is shown in the energy balance equation (cf. Eq. (5)). Similar to a
batch process, an initial crystallizer temperature, which is equiva-
lent to the inflow temperature, is important to the controller
performance. For example, if an inflow temperature is too far from
an optimal temperature, it results in a discrepancy of a steady-
state temperature from an optimal temperature due to the limited
heat transfer rate. The difference can be more critical to the
controller performance when the production of crystals with a
lower set-point value is desired, because crystals with a low 〈α〉 are
usually produced at a high temperature level where the crystal

morphology is very sensitive to the small changes in the super-
saturation level (Kwon et al., 2013a). We can achieve a better
controller performance through the following approach: First,
adjusting inflow temperature appropriately can enhance the
performance of the proposed MPC by achieving a crystallizer
temperature, which is closer to an optimal temperature. Second,
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Fig. 5. The normalized crystal volume distribution obtained from the kMC
simulations at t¼1 h.
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Fig. 6. The profile of crystallizer temperature (T) and jacket temperature at
τ¼3600 s under MPC for the initial crystal shape set-point value, 〈α〉¼ 0:86. After
t¼10 h, the set-point is changed to 〈α〉¼ 1:1.
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the heat transfer rate can be increased by using a material with a
higher overall heat transfer coefficient, Uc, and thus the discre-
pancy can be reduced. Third, the choice of an appropriate
residence time is also important because the crystallizer tempera-
ture at a steady-state is influenced by the residence time (cf.
Eq. (5)). For example, if the residence time is too small (e.g., less
than an hour), crystals with desired shape and size distributions
cannot be produced because crystals do not stay inside a crystal-
lizer for a sufficient amount of time. On the other hand, if the
residence time is too large, the dynamics of a continuous process
becomes similar to that of a batch process in that crystals stay for a
very long time inside a crystallizer, and thus severe drop in the
protein solute concentration is observed. Specifically, it is shown in
Figs. 6–8 that increasing the residence time will enable the system
to reach a steady-state temperature, which is much closer to a
desired value, and thus will result in a narrow range of desired
crystal shape distributions. Moreover, when τZ2 h, significant
concentration drop was observed and thus simply lowering
temperature is not sufficient to maintain a supersaturation level
to an optimal value, and thus it leads to a poor controller
performance, as is shown in Figs. 8 and 9.

In Figs. 6–11, the foregoing analysis is demonstrated through
the profiles of the crystallizer temperature, the jacket temperature,
the protein solute concentration, the average crystal volume, and
the average crystal shape along the simulation at different resi-
dence times. Initially, the jacket temperature is simply increased to
the optimal value by the proposed MPC as is shown by Figs. 6

and 7, and the crystallizer temperature is driven by the jacket
temperature accordingly. A burst of crystal nucleation, which is
caused by a high supersaturation level, is appropriately suppressed
through a fines trap where most of the small crystal fines are
destructed by adjusting the temperature, and thereby dissolution
rates. As a result, large crystals grow larger and small crystal fines
are dissolved back to the continuous phase. However, we note that
no significant rise in the solute concentration is observed because
typically the fraction of fines removed is 10�6–10�5 of the
production rate on a mass basis.

In order to test the response time of the MPC toward a change
in the desired set-point, after 10 h, the set-point is changed from
〈α〉¼ 0:86 to 〈α〉¼ 1:1 where a high supersaturation level is
favored for the production of crystals with a shape more elongated
into (110) direction. As a result, the crystallizer temperature is
decreased to T ¼ 15:0 1C, owing to the jacket temperature com-
puted by MPC, as is shown in Figs. 6 and 7. Specifically, for the
closed-loop simulation of τ¼1 h, the crystallizer temperature
remains constant once the system reaches a new steady-state for
〈α〉¼ 1:1. However, for τ¼2 h, the jacket temperature keeps
decreasing to counteract the severe protein solute concentration
drop and maintain a desired supersaturation level. In both cases
above, the MPC is able to drive the crystal population to a desired
value as it is shown in Fig. 12. Additionally, as we change the set-
point from 〈α〉¼ 0:86 to 〈α〉¼ 1:1, it is shown in Fig. 13 that it takes
about 2 h for the system to reach the new steady-state for τ¼2 h.
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Fig. 8. The profile of the average crystal shape 〈α〉 under MPC for the initial crystal
shape set-point value, 〈α〉¼ 0:86. After t¼10 h, the set-point is changed to 〈α〉¼ 1:1.
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Fig. 9. The profile of solute concentration (C) under MPC for the initial crystal
shape set-point value, 〈α〉¼ 0:86. After t¼10 h, the set-point is changed to 〈α〉¼ 1:1.
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Considering the fact that the mean residence time is 2 h, a
response time of about 2 h is reasonable. Therefore, it verifies that
the proposed MPC responds promptly to the change in the set-
point, the severe concentration drop, and the system disturbances
in an effort for the production of crystals with a desired morphol-
ogy. Furthermore, the system's response time toward the set-point
change can be even shorter when we use a short residence time,
because the crystals with an undesired shape will exit the crystal-
lizer quickly. We can also use an actuator with a higher limitation
on the jacket temperature change, which will allow for the system
to reach the optimal jacket temperature value faster.

In conclusion, the MPC with a fines trap is able to drive the
crystal population to a desired shape distribution by appropriately
dealing with the undesired effects such as the biased nucleation,
disturbances, and the mismatch of moment models as demon-
strated by Figs. 8 and 12. It should be noted that the controller
performance of using multiple prediction steps does not show
further improvement in terms of controller performance, because
the control action is dominated by a constraint on the rate of
temperature change. Therefore, the controller performance can be
further improved by adjusting the constraint on the rate of change

of the manipulated input (i.e., jacket temperature) so that the
system takes more aggressive actions. Additionally, compared to a
batch process, a continuous process can achieve a low polydis-
persity easier for the following two reasons. First, the fines trap
removes most of the small crystal fines whose sizes are less than
the set cut-off size, and this allows for the remaining crystals to
grow larger. Second, once the system reaches its steady-state in
the continuous crystallization, an optimal condition for the pro-
duction of crystals with a desired shape can be maintained until
the process is terminated.

8. Conclusions

Initially, we presented the modeling of the nucleation, and
crystal growth in a continuous crystallization process with a fines
trap through kinetic Monte Carlo (kMC) simulation. The simula-
tion of a fines trap was modeled through a classification function
which indicates a selection curve for fines dissolution in the
continuous crystallizer. In addition to the solute depletion and
the temperature change in the continuous phase by crystallization,
the interplay of inflow/outflow in the continuous crystallizer was
included in the mass and energy balance equations. To deal with a
real-time implementation issue of a controller based on PBM,
moment models were developed to describe the dominant
dynamic behavior of the continuous crystallization along with a
fines trap. Subsequently, the three leading moments were used
along with the balance equations in order to design a model
predictive controller.

The simulation results demonstrated that the crystal growth at
a steady-state operation was successfully regulated by properly
adjusting the jacket temperature. The MPC also suppressed the
influence of the biased nucleation, the disturbances in the mea-
surements, and the sudden change in the desired operating
environment (i.e., changes in the desired set-point value). Addi-
tionally, the measurements of CSD and CLD through FBRM and
PVM, respectively, were assumed to be available from the kMC
simulation. Compared to a batch process, crystals with a low
polydispersity can be produced due to the fines trap as it dissolves
most of the fines whose volumes are less than 1 μm3 in the
crystallizer. We can reduce the response time of the system toward
the sudden set-point change by using a higher flow rate. Further-
more, using an actuator with a higher limitation on the jacket
temperature change can allow for the system to respond quickly
and reach the optimal jacket temperature value faster.
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