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This  work  presents  algorithms  for improved  fixed-time  performance  of  Lyapunov-based  economic  model
predictive  control  (LEMPC)  of  nonlinear  systems.  Unlike  conventional  Lyapunov-based  model  predictive
control  (LMPC)  schemes  which  typically  utilize  a  quadratic  cost  function  and  regulate  a  process  at  a
steady-state,  LEMPC  designs  very  often  dictate  time-varying  operation  to  optimize  an  economic  (typi-
cally  non-quadratic)  cost  function.  The  LEMPC  algorithms  proposed  here  utilize  a  shrinking  prediction
horizon  with  respect  to  fixed  (but  potentially  large)  operation  period  to ensure  improved  performance,
conomic optimization
odel predictive control
onlinear systems
hemical processes
rocess optimization

measured  by  the  desired  economic  cost,  over  conventional  LMPC  by solving  auxiliary  LMPC  problems  and
incorporating  appropriate  constraints,  based  on  the  LMPC  solution,  in  their  formulations  at  various  samp-
ling times.  The  proposed  LEMPC  schemes  also  take  advantage  of  a predefined  Lyapunov-based  explicit
feedback  law  to  characterize  their  stability  region  while  maintaining  the  closed-loop  system  state  in  an
invariant  set  subject  to  bounded  process  disturbances.  The  LEMPC  algorithms  are  demonstrated  through

cess  e
a nonlinear  chemical  pro

. Introduction

The development of optimal operation and control policies for
hemical process systems aiming at optimizing process economics
as always been an important research subject with major practi-
al implications. Generally, economic considerations are addressed
ia a two-layer approach in which the upper layer carries steady-
tate process optimization to obtain economically optimal process
peration set-points (steady-states) while the lower layer employs
ppropriate feedback control laws to steer the process state to the
conomically optimal steady-state operating point computed by
he upper layer. Model predictive control (MPC) is widely utilized
n the process control layer to provide optimal manipulated input
alues by minimizing a (typically) quadratic cost function which
sually penalizes the deviation of the system state and manipulated

nputs from their economically-optimal steady-state values subject
o input and state constraints [4].  This two-layer approach typically
estricts process operation to a steady-state. In order to account

or general economic optimization considerations, the quadratic
ost function used in conventional MPC  should be replaced by
n economics-based cost function which may  be non-convex and

∗ Corresponding author at: Department of Electrical Engineering, University of
alifornia, Los Angeles, CA 90095-1592, USA. Tel.: +1 310 794 1015;
ax: +1 310 206 4107.
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© 2012 Elsevier Ltd. All rights reserved.

may  result in a time-varying process operation in order to be opti-
mized over a fixed time window. Consequently, the conventional
MPC scheme, where an economics-based cost function is used,
should be re-formulated in an appropriate way  to guarantee closed-
loop stability. With respect to recent results on conventional MPC,
efforts have focused on combination of steady-state optimization
and linear MPC  [6],  stability of economic MPC of nonlinear sys-
tems through employing a terminal constraint which requires that
the closed-loop system state settles to a steady-state at the end of
the prediction horizon [5] and economic MPC  of cyclic processes
(including closed-loop stability analysis using a suitable termi-
nal constraint) [10]. The work in [8] formulated a linear robust
economic MPC  by taking advantage of second-order cone program-
ming. The work in [11] considered a cooperative distributed linear
economic MPC  scheme subject to convex economic objectives.
Simultaneous consideration of economic and control performance
in a single layer architecture has been studied in [14]. The use
of economic MPC  for the reduction of energy related costs using
an economic cost accounting for time-of-use energy charge and
demand charge has been considered in [13]. Economic performance
of MPC  for a simulated electric arc furnace has been studied in [19].
Furthermore, economic considerations of MPC  were addressed in
[16] through the addition of a nonlinear term related to the eco-

nomic objective in a conventional quadratic cost. Robust stability
of economically oriented nonlinear MPC  with infinite prediction
horizon for cyclic processes has been considered in [9].  In a previ-
ous work [7],  we  presented a two-mode Lyapunov-based economic

dx.doi.org/10.1016/j.jprocont.2012.11.003
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
mailto:pdc@seas.ucla.edu
dx.doi.org/10.1016/j.jprocont.2012.11.003


f Proc

M
h
i
p
m
v
M
w
s

t
m
b
n
f
a
p
r
m
L
p
T
o
f
t
b
t
p
w
a

2

2

A
i
t
d
o
x
m
z

2

b

x

w
t
i
i
a
c
W
s
o
u
W
a
i
w

M. Heidarinejad et al. / Journal o

PC  (LEMPC) design for nonlinear systems which is also capable of
andling asynchronous and delayed measurements and extended

t in the context of distributed MPC  [2].  Despite the above recent
rogress, at this point, there is limited work to ensure improve-
ent of closed-loop performance through time-varying operation

ia economic MPC  with respect to operation under conventional
PC  in the context of fixed-time operation. An important recent
ork has established improved economic MPC  performance over

teady-state operation for infinite-time operation [1].
Motivated by the lack of available methodologies to guaran-

ee performance of economic MPC  for fixed-time (in a sense to be
ade precise below) operation, this work presents two  Lyapunov-

ased economic model predictive control (LEMPC) algorithms for
onlinear systems which are capable of optimizing closed-loop per-

ormance with respect to a general objective function that directly
ddresses economic considerations. The LEMPC algorithms pro-
osed in this work utilize a shrinking prediction horizon with
espect to a fixed operation period to ensure improved perfor-
ance, measured by the desired economic cost, over conventional

MPC by solving auxiliary LMPC problems and incorporating appro-
riate constraints in their formulations at various sampling times.
he proposed LEMPC schemes may  dictate time-varying process
peration, take advantage of a predefined Lyapunov-based explicit
eedback law to characterize their stability region while main-
aining the closed-loop system state in an invariant set subject to
ounded process disturbances. The LEMPC algorithms are applied
o a chemical process example and improved average economic
erformance, both in the nominal case and under disturbances,
ith respect to conventional LMPC schemes is demonstrated for

 broad set of initial conditions.

. Preliminaries

.1. Notation

The notation | · | is used to denote the Euclidean norm of a vector.
 continuous function  ̨ : [0, a) → [0, ∞)  is said to belong to class K if

t is strictly increasing and satisfies ˛(0) = 0. The symbol ˝r is used
o denote the set ˝r : = {x ∈ Rnx : V(x) ≤ r} where V is a continuously
ifferentiable, positive definite scalar function and r > 0, and the
perator ‘\’ denotes set subtraction, that is, A \ B : = {x ∈ Rnx : x ∈ A,

 /∈ B}. The symbol diag(v) denotes a matrix whose diagonal ele-
ents are the elements of vector v and all the other elements are

eros.

.2. Class of nonlinear systems

We  consider a class of nonlinear systems which can be described
y the following state-space model:

˙ (t) = f (x(t), u(t), w(t)) (1)

here x ∈ Rnx denotes the vector of state variables of the sys-
em, and u ∈ R and w ∈ Rnw denote the control (manipulated)
nput and the disturbance vector, respectively. The control input
s restricted to be in a nonempty convex set U ⊆ R, which is defined
s U : = {u ∈ R : |u| ≤ umax} where umax is the magnitude of the input
onstraint. The disturbance w ∈ Rnw is bounded, i.e., w ∈ W where

 := {w ∈ Rnw : |w| ≤ �, � > 0}. We  assume that f is a locally Lip-
chitz vector function and that the origin is an equilibrium point
f the unforced nominal system (i.e., the system of Eq. (1) with

(t) ≡ 0 and w(t) ≡ 0 for all times) which implies that f(0, 0, 0) = 0.
e  assume that the state x of the system is sampled synchronously

nd the time instants at which we have state measurements are
ndicated by the time sequence {tk≥0} with tk = t0+ k�,  k = 0, a, . . .

here t0 is the initial time and � is the sampling time.
ess Control 23 (2013) 404– 414 405

2.3. Stabilizability assumption

We  assume that there exists a Lyapunov-based controller
u = h(x) locally Lipschitz in x which satisfies the input constraints
for all the states x inside a given stability region and makes,
under continuous, state-feedback implementation, the origin of
the closed-loop system asymptotically stable. Using converse Lya-
punov theorems [3,12],  this assumption implies that there exist
class K functions ˛i(·), i = 1, 2, 3, 4 and a continuously differentiable
Lyapunov function V(x), that satisfy the following inequalities:

˛1(|x|) ≤ V(x) ≤ ˛2(|x|)
∂V(x)

∂x
f (x, h(x), 0) ≤ −˛3(|x|)

∣∣∣∣∂V(x)
∂x

∣∣∣∣ ≤ ˛4(|x|)

h(x) ∈ U

(2)

for all x ∈ D ⊆ Rnx where D is an open neighborhood of the origin. We
represent the region ˝� ⊆ D as the stability region of the closed-
loop system under the controller h(x). Using the Lipschitz property
assumed for f, and taking into account that the manipulated input
u and the disturbance vector w are bounded, there exists a positive
constant M such that

|f (x, u, w)| ≤ M (3)

for all x ∈ ˝� , u ∈ U and w ∈ W .  In addition, by the continuous
differentiability property of the Lyapunov function V(x) and the Lip-
schitz property assumed for the vector field f, there exist positive
constants Lx, Lw , L′x and L′w such that∣∣f (x, u, w) − f (x′, u, 0)

∣∣ ≤ Lx

∣∣x − x′
∣∣+ Lw |w|

∣∣∣∣∂V(x)
∂x

f (x, u, w) − ∂V(x′)
∂x

f (x′, u, 0)

∣∣∣∣ ≤ L′x
∣∣x − x′

∣∣+ L′w |w|
(4)

for all x, x′ ∈ ˝� , u ∈ U and w ∈ W .

Remark 1. It should be emphasized that in the current work, we
take advantage of the level set ˝� of the Lyapunov function V(x)
to estimate the stability region (i.e., domain of attraction) of the
closed-loop system under the feedback controller h(x). Specifically,
computation of an estimation of the domain of attraction of the
closed-loop system proceeds as follows: first, a controller (e.g., h(x))
is designed that makes the time-derivative of a Lyapunov function,
V(x), along the closed-loop system trajectory negative definite in
an open neighborhood around the equilibrium point; then, an esti-
mate of the set where V̇ is negative is computed, and finally, a level
set (ideally the largest) of V (denoted by ˝� in the present work)
embedded in the set where V̇ is negative, is computed; see Section
5 for an application of this approach.

2.4. Lyapunov-based MPC

The Lyapunov-based MPC  (LMPC) design [15] inherits the
closed-loop stability properties of the Lyapunov-based controller
h(·) when it is applied in a sample and hold fashion. Specifically,
using a conventional quadratic cost function

Ls(x(t), u(t)) = xT (t)Qx(t) + uT (t)Ru(t) (5)

and the following sampled state trajectory xh(t) when the
Lyapunov-based controller h(·) is applied in a sample-and-hold

fashion

ẋh(t) = f (xh(t), h(xh(tk + l�)), 0),  tk + l� ≤ t < tk + (l + 1)�,

l = 0, . . . , N − 1 (6)
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he LMPC at sampling time tk is formulated as follows

min
∈S(�)

∫ tk+N

tk

Ls(x̃(�), u(�))d� (7a)

.t. ˙̃x(�) = f (x̃(�), u(�), 0) (7b)

(�) ∈ U, � ∈ [tk, tk+N) (7c)

˜(tk) = x(tk) (7d)

∂V(x(tj))

∂x
f  (x(tj), u(tj), 0) ≤ ∂V(xh(tj))

∂xh

f (xh(tj), h(xh(tj)), 0),

j = k, . . . , k + N − 1 (7e)

where x̃ is the predicted state trajectory of the system with control
nput calculated by this LMPC, S(�) is the set of piecewise constant
unctions with period �,  N is the finite prediction horizon and Q
nd R are positive definite weighting matrices. Eq. (7b) utilizes a
ominal system model to predict the future evolution of the sys-
em state with initialization by sampled state feedback at time tk
Eq. (7d)) and Eq. (7c) denotes the constraint on the manipulated
nput. The Lyapunov-based constraint of Eq. (7e) guarantees that
he amount of reduction in the Lyapunov function when we  apply
he input computed by the LMPC is at least at the level when the
yapunov-based controller h(·) is applied in a sample and hold fash-
on. It should be emphasized that in traditional LMPC [15], Eq. (7e)
olds only for the sampling time tk; however, in the present work,

or reasons that will become clear in Section 3 below, this con-
traint is enforced over N sampling times. The LMPC inherits the
losed-stability properties of h(·). For a detailed closed-loop stabil-
ty analysis, in the context of receding horizon control applied on
n unbounded time interval, please refer to [4,15].

.5. Lyapunov-based economic MPC

Lyapunov-based economic MPC  (LEMPC) includes an economic
ost function Le(x(t), u(t)) in its formulation which may  directly
ddress economic considerations and it does not necessarily take
ts optimum value at the steady-state point corresponding to the
MPC formulation of Eq. (7) (taken to be the origin in this work
or simplicity). This LEMPC characteristic requires reformulation
f the conventional LMPC to address possibly time-varying opera-
ion instead of steady-state operation achieved by the LMPC of Eq.
7); however, the closed-loop stability region needs to be precisely
haracterized. Recently, in [7],  we proposed an LEMPC scheme
hrough taking advantage of the properties of the Lyapunov-based
ontroller h(x). Specifically, the LEMPC was formulated as follows:

max
∈S(�)

∫ tk+N

tk

Le(x̃(�), u(�))d� (8a)

.t. ˙̃x(�) = f (x̃(�), u(�), 0) (8b)

(�) ∈ U, � ∈ [tk, tk+N) (8c)

˜(tk) = x(tk) (8d)

(x̃(t)) ≤ �, ∀t ∈ [tk, tk+N) (8e)

The constraint of Eq. (8e) maintains the predicted system state
long the prediction horizon in the invariant set ˝� where ˝�

as been defined in Section 2.3,  and within this set, the LEMPC
ddresses economic considerations by optimizing the economic
ost function of Eq. (8a). It should be emphasized that the con-

rol design in [7] deals with the general concept of economic MPC
hich achieve boundedness of the closed-loop system state as well

s steady-state operation through utilizing a two-mode operation
nd through simulations we demonstrated that the economic MPC
ess Control 23 (2013) 404– 414

of [7] may  outperform steady-state operation; however, the cur-
rent work deals with guaranteed performance improvement from
a theoretical point of view with respect to the LMPC (with quadratic
cost) operation. Refer to [7] for a detailed description and analysis of
the LEMPC formulation of Eq. (8) in the context of receding horizon
control applied on an unbounded time interval.

3. LEMPC Algorithm I: nominal operation

In this section, we consider the design of Lyapunov-based
economic MPC  (LEMPC) for nonlinear systems under nominal oper-
ation (i.e., w(t) ≡ 0). We  propose a finite prediction horizon LEMPC
formulation which leads to improvement in economic closed-loop
performance compared to a conventional steady-state LMPC oper-
ation for a given initial condition and a fixed-time interval of
operation. The proposed scheme at the first stage solves an aux-
iliary LMPC problem and then through different sampling times,
it incorporates the solution of this LMPC problem to the LEMPC
formulation. Specifically, we define the manipulated input of the
LMPC design of Eq. (7) which is only evaluated at sampling time t0
as follows:

uLMPC (t) = u∗(t|t0), ∀t ∈ [t0, tN). (9)

For simplicity, we assume that � = (tN− t0)/N. Subsequently, let the
state trajectory xLMPC(t) be defined as follows:

ẋLMPC (t) = f (xLMPC (t), uLMPC (t), 0),  ∀t ∈ [t0, tN) (10)

which is the system state trajectory if the manipulated input
obtained through the LMPC of Eq. (7) is applied. Also, we define

uLMPC =
∫ tN

t0

uLMPC (�)d� (11)

as the overall amount of control action utilized by the LMPC of Eq.
(7) over a finite prediction horizon N. Subsequently, let us define

cLMPC =
∫ tN

t0

Le(xLMPC (�), uLMPC (�))d� (12)

as the overall value of the corresponding economic cost function
when we  apply the LMPC solution obtained at sampling time t0
over the period [t0, tN). The purpose of the LEMPC design discussed
below is to obtain an optimal manipulated input trajectory which
uses the same amount of control action obtained by the LMPC of
Eq. (7), while improving the economic cost function value over the
process operation period [t0, tN); this allows a consistent compari-
son of the economic cost under LEMPC and LMPC for the case where
the control action is not penalized in the economic cost as in the
example in Section 5.

3.1. Implementation strategy

At time t0, first the LMPC obtains its manipulated input trajec-
tory over [t0, tN) based on state feedback x(t0). After computing
the amount of control action and economic cost over time [t0,
tN) induced by the LMPC state and manipulated input trajectories
using Eqs. (11) and (12), respectively, the LEMPC obtains its optimal
manipulated input trajectory using a shrinking horizon approach.
At each sampling time tk, based on x(tk), the LEMPC takes advantage
of the nominal system model to predict the future state of the sys-

tem over a finite prediction horizon while maximizing an economic
cost function. A schematic diagram of the proposed LEMPC design
is depicted in Fig. 1. The implementation strategy of the proposed
LEMPC can be summarized as follows:
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Fig. 1. LEMPC architecture under nominal operation.

. At time t0, an auxiliary LMPC optimization problem of Eq. (7) is
solved based on state measurement x(t0).

. The amount of control action used by the LMPC and its corre-
sponding economic cost over [t0, tN) are computed using Eqs.
(11) and (12), respectively.

. The LEMPC receives state feedback x(tk) (k = 0, . . .,  N − 1)
and solves an optimization problem with prediction horizon
Nk = N − k.

. The LEMPC sends the first step of its optimal solution to the
control actuators.

. Go to Step 3 (k ←− k + 1).

.2. LEMPC formulation

The LEMPC is evaluated to obtain the future input trajectories
ased on state feedback x(tk) at sampling time tk. Specifically, the
ptimization problem of the proposed LEMPC under nominal oper-
tion is as follows:

max
∈S(�)

∫ tN

tk

Le(x̃(�), u(�))d� (13a)

.t. ˙̃x(�) = f (x̃(�), u(�), 0) (13b)

(�) ∈ U, � ∈ [tk, tN) (13c)

˜(tk) = x(tk) (13d)

(x̃(t)) ≤ �, ∀t ∈ [tk, tN) (13e)
tN

tk

u(�)d� = uLMPC − uk (13f)

tN

tk

Le(x̃(�), u(�))d� ≥ cLMPC − ck (13g)

The constraint of Eq. (13e) restricts the predicted system state
o be in the set ˝� . The constraint of Eq. (13f) ensures that the same
mount of control action is used by both the LMPC of Eq. (7) and
he LEMPC of Eq. (13) in the time interval [t0, tN). The constraint of
q. (13g) guarantees that the economic cost function value over the
ime interval [t0, tN) is at least at the level achieved when we use the
tate and manipulated input trajectory obtained through the LMPC
f Eq. (7) considering the optimal manipulated inputs obtained by
he LEMPC at previous sampling times (see also Eqs. (15) and (16)
elow). It should be mentioned that through this implementation
trategy, LEMPC utilizes a decreasing sequence of finite prediction
orizons Nk = N − k (k = 0, . . .,  N − 1) where N is the horizon of LMPC
ptimization problem which is solved at sampling time t0 and its
olution is incorporated at the LEMPC formulation. The optimal
olution to this optimization problem is denoted by u*(t|t ), which
k
s defined for t ∈ [tk, tN). The manipulated input of the LEMPC of Eq.
13) is defined as follows:

LEMPC (t) = u∗(t|tk), ∀t ∈ [tk, tN) (14)
ess Control 23 (2013) 404– 414 407

Based on the LEMPC solution, we  have

uk =
∫ tk

t0

uLEMPC (�)d� (15)

and

ck =
∫ tk

t0

Le(x̃(�), uLEMPC (�))d� (16)

which are incorporated in the LEMPC of Eq. (13) to account for the
optimal manipulated input obtained at previous sampling times tj
where j = 0, 1, . . .,  k − 1.

Remark 2. We  note that we  can formulate the LEMPC in a slightly
different manner by removing the equality constraint of Eq. (13f)
and allowing the LEMPC to use more (or even less) control energy
than the LMPC in order to optimize the economic cost further; how-
ever, this may lead to an inconsistent comparison between the two
approaches, particularly, in the case where the control action is not
penalized in the economic cost as it is the case in the chemical pro-
cess example considered in Section 5. It should be emphasized that
without the constraint of Eq. (13f), we can still prove closed-loop
stability as well as performance results. Furthermore, the constraint
of Eq. (13g) guarantees improvement in the economic cost function
compared to the solution provided by LMPC. This constraint guar-
antees feasibility of the LEMPC optimization problem as well as
improvement in economic cost function value. Without this con-
straint it is not guaranteed to improve the economic cost function
via LEMPC over LMPC, given the non-convexity of the cost function.

3.3. Closed-loop stability and performance

Theorem 1 below provides sufficient conditions under which
the LEMPC of Eq. (13) guarantees that the state of the closed-loop
system of Eq. (1) is always bounded in an invariant set and it yields
a closed-loop economic cost that is as good or superior to the one
of the LMPC for finite-time operation over [t0, tN).

Theorem 1. Consider the system of Eq. (1) in closed-loop under
the LEMPC of Eq. (13) based on a controller h (x) that satisfies the
conditions of Eq. (2).  Let �w > 0, � > 0 and � > �s > 0 satisfy

−˛3(˛−1
2 (�s)) + L′xM� ≤ −�w

�
. (17)

If x(t0) ∈ ˝� , then the state x(t) of the closed-loop system is bounded
in ˝� ∀ t ∈ [t0, tN) and∫ tN

t0

Le(xLEMPC (�), uLEMPC (�))d� ≥
∫ tN

t0

Le(xLMPC (�), uLMPC (�))d�

(18)

Proof. For the optimization problem of the LMPC of Eq. (7) when
x(t0) ∈ ˝� , u(�) = h(x̃(�)), ∀� ∈ [t0, tN) is a feasible solution. For the
LEMPC optimization problem of Eq. (13), at sampling time t0, the
solution of the LMPC of Eq. (7) (uLMPC(�), ∀ � ∈ [t0, tN)) is also a fea-
sible solution. This solution satisfies the input constraint of Eq. (8c)
through the stabilizability assumption of Eq. (2) and the Lyapunov-
based stability constraint of Eq. (7e). At sampling time tk where
k > 0, the last Nk−1− 1 steps of the optimal solution of the LEMPC
at sampling time tk−1 (i.e., u*(t|tk−1), ∀ t ∈ [tk, tN)) is a feasible solu-
tion to the LEMPC of Eq. (13) at tk due to the fact that there is no
process disturbance. Furthermore, through the enforcement of the
constraint of Eq. (13e) and also satisfaction of the Eq. (17), it has

been proved in [7] that the closed-loop system state is bounded
within ˝� .

To be consistent in the comparison from an economic closed-
loop performance point of view between the LMPC of Eq. (7) and
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he LEMPC of Eq. (13), we  choose a decreasing sequence of predic-
ion horizons to ensure that both formulations have been evaluated
ver time interval [t0, tN). Considering the constraint of Eq. (13g) at
ampling time tN−1, we can write

tN

tN−1

Le(x̃(�), u(�))d� ≥ cLMPC − cN−1 (19)

eplacing cLMPC and cN−1 using Eqs. (12) and (16) in Eq. (19), we
an obtain Eq. (18) where the state trajectory xLEMPC(t) is defined as
ollows:

˙ LEMPC (t) = f (xLEMPC (t), uLEMPC (t), 0),  ∀t ∈ [t0, tN) (20)

emark 3. Theorem 1 essentially says that solving the ‘economic
PC’ problem over a fixed time interval produces an economi-

ally equal or superior solution to solving the ‘LMPC stabilization’
roblem under the same initial conditions. However, this does not
ean that there is no need to solve the LEMPC problem at each

k during nominal operation. The reason for resolving this prob-
em at each sampling time (albeit with a shrinking horizon) is the
ncorporation of feedback through the use of the state measure-

ent in the controller; this incorporation of feedback ensures the
obustness of the control solution with respect to infinitesimally
mall but unmodeled plant/model mismatch (that goes beyond the
pecific disturbance model included in Section 4 below) as well
s the stabilization of open-loop unstable systems that can not
e accomplished with an open-loop implementation (when the
EMPC problem is solved only in the beginning of the interval and
t is implemented thereafter) of the LEMPC solution.

emark 4. It should be emphasized that the LEMPC architecture
roposed in [7] employs a two-mode operation where at the
rst mode it deals with addressing economic considerations by
aintaining the system state in an invariant set and at the second
ode it focuses on convergence to a small invariant set around

 steady-state by incorporating an appropriate Lyapunov-based
onstraint. Since in this work, we focus on economic closed-loop
erformance, we only described the proposed LEMPC designs in
he context of mode one operation in [7] by evaluating both the
MPC and the LEMPC over a finite-time operation interval [t0, tN).
ote that, depending on the application and certain specifications,

he LEMPC of Eq. (13) can operate at mode 2 after time tN to achieve
ractical closed-loop stability (i.e., ultimate convergence of the
losed-loop state to a small invariant set including the origin).

e deal with applying the LEMPC in the interval [tN, tf) where
f denotes the final time of LEMPC evaluation and the time the
losed-loop system state enters a small invariant set around the
rigin. In a similar manner, first the LMPC is evaluated at sampling
ime tN and the corresponding input and economic cost based
onstraints (Eqs. (13f) and (13g)) are obtained and are incorporated
n the formulation of the LEMPC at mode 2 at subsequent sampling
imes tk where k ≥ N. In terms of the LEMPC formulation at mode
, it includes the Lyapunov-based constraint of Eq. (7e) to address
losed-loop stability instead of the constraint of Eq. (13e) which
eals with maintaining the closed-loop system state in an invariant
et for economic optimization purposes. Specifically, at sampling
ime tN the auxiliary LMPC problem of Eq. (7) is solved with

0 = tN and tN = tf. From the solution of this problem, we can obtain

LMPC(t) = u*(t|tN), ẋLMPC (t) = f (xLMPC (t), uLMPC (t), 0),  ∀t ∈ [tN, tf ),

LMPC =
∫ tf

tN
uLMPC (�)d� and cLMPC =

∫ tf

tN
Le(xLMPC (�), uLMPC (�))d�.

sing a decreasing sequence of finite prediction horizons
ess Control 23 (2013) 404– 414

Nk = (tf− tk)/�, the LEMPC at mode 2 at sampling time tk where
k ≥ N is formulated as follows

max
u∈S(�)

∫ tf

tk

Le(x̃(�), u(�))d� (21a)

s.t. ˙̃x(�) = f (x̃(�), u(�), 0) (21b)

u(�) ∈ U, � ∈ [tk, tf ) (21c)

x̃(tk) = x(tk) (21d)∫ tf

tk

u(�)d� = uLMPC − uk (21e)

∫ tf

tk

Le(x̃(�), u(�))d� ≥ cLMPC − ck (21f)

∂V(x(tk))
∂x

f  (x(tk), u(tk), 0) ≤ ∂V(x(tk))
∂x

f  (x(tk), h(x(tk)), 0) (21g)

where

uk =
∫ tk

tN

uLEMPC (�)d� (22)

and

ck =
∫ tk

tN

Le(x̃(�), uLEMPC (�))d� (23)

4. LEMPC Algorithm II: operation under disturbances

In this section, we consider the design of an LEMPC scheme for
nonlinear systems subject to bounded process disturbances (i.e.,
w(t) /= 0). The proposed scheme at each sampling time solves the
auxiliary LMPC problem and then incorporates the LMPC solution
to the LEMPC formulation as constraints. The manipulated input of
the LMPC design of Eq. (7) from time tk to tN is defined as follows:

uLMPC (t) = u∗(t|tk), ∀t ∈ [tk, tN). (24)

Let the state trajectory xLMPC(t) be defined as follows:

ẋLMPC (t) = f (xLMPC (t), uLMPC (t), 0),  ∀t ∈ [tk, tN) (25)

which is the system state trajectory when the manipulated
input is obtained through the LMPC of Eq. (7). Also, we
define uLMPC =

∫ tN

tk
uLMPC (�)d� as the amount of control action

utilized by the LMPC of Eq. (7) over a finite prediction hori-
zon Nk where Nk = N − k and k = 0, 1, . . .,  N − 1. Subsequently,
let us define c1

LMPC =
∫ tk+1

tk
Le(xLMPC (�), uLMPC (�))d� and c2

LMPC =∫ tN

tk
Le(xLMPC (�), uLMPC (�))d� as the value of the economic cost func-

tion induced by the LMPC over the first prediction step and the
entire prediction horizon, respectively. The purpose of the LEMPC
design is to obtain an optimal manipulated input trajectory which
uses the same amount of control action as the LMPC of Eq. (7) at
each sampling time while it ensures that at each sampling time tk,
it achieves closed-loop state boundedness and a better economic
cost value compared to the LMPC over the operation periods [tk,
tk+1) and [tk, tN) for the nominal, i.e.,(w(t) ≡ 0) case, respectively.

4.1. Implementation strategy

The proposed control scheme solves an auxiliary LMPC opti-
mization problem of Eq. (7) at each sampling time tk. In order to

account for the bounded process disturbance effect, we  consider
another region ˝�e with �e < �. If the state measurement x(tk) is
in the region ˝�e , the LEMPC maximizes the cost function within
the region ˝�e ; if the state measurement is in the region ˝�/˝�e ,
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straints guarantee feasibility of the LEMPC optimization problem
as well as improvement in economic cost function value. Without
these constraints it may  not be guaranteed to improve the eco-
nomic cost function via LEMPC, given the non-convexity of the cost
M. Heidarinejad et al. / Journal o

he LEMPC first drives the system state to the region ˝�e and then
aximizes the cost function within ˝�e .
Specifically, the implementation strategy of the proposed

EMPC can be summarized as follows:

. At time tk with tk ∈ [t0, tN), an auxiliary LMPC optimization prob-
lem of Eq. (7) is solved based on state measurement x(tk) for
t ∈ [tk, tN).

. The amount of control action used by the LMPC and its corre-
sponding economic cost are computed.

. The LEMPC receives x(tk) and solves its optimization problem
with prediction horizon N − k.

. If x(tk) ∈ ˝�e , go to Step 4.1. Else, go to Step 4.2.
4.1. The controller maximizes the economic cost function within

˝�e . Go to Step 5.
4.2. The controller drives the system state to the region ˝�e and

then maximizes the economic cost function within ˝�e . Go
to Step 5.

. Go to Step 1 (k ←− k + 1).

.2. LEMPC formulation

The optimization problem of the proposed LEMPC at sampling
ime tk is as follows:

max
∈S(�)

∫ tN

tk

Le(x̃(�), u(�))d� (26a)

.t. ˙̃x(�) = f (x̃(�), u(�), 0) (26b)

(�) ∈ U, � ∈ [tk, tN) (26c)

˜(tk) = x(tk) (26d)

(x̃(t)) ≤ �e, ∀t ∈ [tk, tN), ifV(x(tk)) ≤ �e (26e)
tN

tk

u(�)d� = uLMPC (26f)

tk+1

tk

Le(x(�), u(�))d� ≥ c1
LMPC (26g)

tN

tk

Le(x(�), u(�))d� ≥ c2
LMPC (26h)

∂V(x(tk))
∂x

f  (x(tk), u(tk), 0) ≤ ∂V(x(tk))
∂x

f  (x(tk), h(x(tk)), 0),

if�e < V(x(tk)) ≤ � (26i)

The constraint of Eq. (26e) restricts the predicted system state
o be in the set ˝�e . The constraint of Eq. (26i) guarantees that
he reduction rate of the Lyapunov function value when the first
tep of the LEMPC input is applied is at least at the level achieved
y applying the Lyapunov-based controller h(x) when it is applied

n a sample and hold fashion and �e < V(x(tk)) ≤ �. It should be
entioned that a decreasing sequence of finite prediction hori-

ons Nk = N − k where k = 0, . . .,  N − 1 is incorporated in the LMPC
nd LEMPC formulations at sampling time tk ∈ [t0, tN). The optimal
olution to this optimization problem is denoted by u*(t|tk) and is
efined for t ∈ [tk, tN). The manipulated input of the LEMPC of Eq.
26) is defined as uLEMPC(t) = u*(t|tk), ∀ t ∈ [tk, tN).

emark 5. The main difference of the proposed LEMPC algorithms

f Eqs. (13) and (26) arises from the existence of bounded process
isturbance. The LEMPC of Eq. (13) takes only advantage of the solu-
ion of the auxiliary LMPC problem at time t0 through a decreasing
equence of finite prediction horizons, while the LEMPC of Eq. (26),
ess Control 23 (2013) 404– 414 409

utilizes the solution of the LMPC at each sampling time tk, while
accounting for the influence of disturbance on the process through
the state measurement feedback x(tk).

4.3. Closed-loop stability and performance

Corollary 1 below provides sufficient conditions under which
the LEMPC of Eq. (26) guarantees that the state of the closed-loop
system of Eq. (1) is always bounded in ˝� for w(t) /= 0 and at each
sampling time the LEMPC yields a closed-loop economic cost that
is as good or superior to the one of the LMPC over the interval [tk,
tk+1) when w(t) ≡ 0.

Corollary 1. Consider the system of Eq. (1) in closed-loop under the
LEMPC design of Eq. (26) based on a controller h(x) that satisfies the
conditions of Eq. (2).  Let �w > 0, � > 0, � > �e > 0 and � > �s > 0 satisfy

�e ≤ � − fV (fW (�)) (27)

and

−˛3(˛−1
2 (�s)) + L′xM� + L′w� ≤ −�w

�
. (28)

where

fV (s) = ˛4(˛−1
1 (�))s + Mvs2 (29)

with Mv being a positive constant and

fW (�) = Lw�

Lx
(eLx� − 1) (30)

If x(t0) ∈ ˝� and �s ≤ �e, then the state x(t) of the closed-loop system
is bounded in ˝� ∀t ∈ [t0, tN), and if w(t) ≡ 0 at each sampling time
tk∫ tk+1

tk

Le(xLEMPC (�), uLEMPC (�))d� ≥
∫ tk+1

tk

Le(xLMPC (�), uLMPC (�))d�

(31)

Proof. For a detailed proof regarding boundedness (i.e., x(t0) ∈ ˝�

implies that x(t) ∈ ˝� for t ∈ [t0, tN)) of the closed-loop system state
under h(x) and LMPC, please refer to [7,4]. From a feasibility point
of view, since at sampling time tk x(tk) ∈ ˝� , the LMPC solution
uLMPC(�), ∀ � ∈ [tk, tk+N) is a feasible solution for the LEMPC of Eq.
(26), and thus, the LEMPC of Eq. (4.2) also ensures that x(t) ∈ ˝� ,
∀ t ∈ [t0, tN). Through enforcing the constraints of Eqs. (26g) and
(26h) at each sampling time tk, the LEMPC of Eq. (26) ensures that
it obtains an input trajectory that optimizes the economic cost
function over the first step and the entire prediction horizon for
w(t) ≡ 0 with respect to LMPC, respectively, while, both the LMPC
and LEMPC designs use the same amount of control action over the
entire prediction horizon by enforcing the constraint of Eq. (26f) at
each sampling time. �

Remark 6. Eqs. (13g), (26g) and (26g) guarantee improvement
in the economic cost function compared to the solution provided
by LMPC for w(t) ≡ 0. It should be emphasized that these two  con-
function. Furthermore, even though we  cannot make any economic
performance improvement claims for the LEMPC over LMPC when
w(t) /= 0, our extensive closed-loop simulations in the next section
indicate certain benefits of the proposed LEMPC.
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Table 1
Parameter values.

T0 = 300 K F = 5 m3/h
V  = 1.0 m3 E = 5 ×103 kJ/kmol
k0 = 13.93 1/h �H = 1.15 × 104 kJ/kmol
Cp = 0.231 kJ/(kg K) R = 8.314 kJ/(kmol K)
	  = 1000 kg/m3 C = 2 kmol/m3
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Fig. 2. ˝� and state trajectories of the process under the LMPC design of Eq. (7)

F

As

Ts = 350 K CA0s = 4 kmol/m3

Q = 1.73 × 105 kJ/h

. Application to a chemical process example

Consider a well-mixed, non-isothermal continuous stirred tank
eactor (CSTR) where an irreversible, second-order, endothermic
eaction A → B takes place, where A is the reactant and B is the
esired product. The feed to the reactor consists of pure A at flow
ate F, temperature T0 and molar concentration CA0. Due to the non-
sothermal nature of the reactor, a jacket is used to provide heat
o the reactor. The dynamic equations describing the behavior of
he reactor, obtained through material and energy balances under
tandard modeling assumptions, are given below:

dCA

dt
= F

V
(CA0 − CA) − k0e−E/RT C2

A (32a)

dT

dt
= F

V
(T0 − T) + −�H

	Cp
k0e−E/RT C2

A +
Q

	CpV
(32b)

here CA denotes the concentration of the reactant A, T denotes the
emperature of the reactor, Q denotes the rate of heat supply to the
eactor, V represents the volume of the reactor, �H, k0 and E denote
he enthalpy, pre-exponential constant and activation energy of the
eaction, respectively, and Cp and 	 denote the heat capacity and
he density of the fluid in the reactor, respectively. The values of the
rocess parameters used in the simulations are shown in Table 1.
he process model of Eq. (32) is numerically simulated using an
xplicit Euler integration method with integration step hc = 10−4 h.

The process model has one stable steady-state in the operating
ange of interest. The control objective is to optimize the process
peration in a region around the stable steady-state (CAs, Ts) to max-
mize the average production rate of B through manipulation of the
oncentration of A in the inlet to the reactor, CA0. The steady-state
nput value associated with the steady-state point is denoted by

A0s. The process model of Eq. (32) belongs to the following class of
onlinear systems:

˙ (t) = f (x(t)) + g(x(t))u(t)
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ig. 3. State and manipulated input trajectories of the process under the LMPC design of E
with initial state (CA(0), T(0)) = (1 kmol/m3, 320 K) for one period of operation. The
symbols ◦ and × denote the initial (t = 0 h) and final (t = 1 h) state of these closed-loop
system trajectories, respectively.

where xT = [x1 x2] = [CA− CAs T − Ts] is the state, u = CA0− CA0s is the
input, and f = [f1 f2]T and g = [g1 g2]T are vector functions. The input
is subject to constraints as follows: |u| ≤ 3.5 kmol/m3. The economic
measure considered in this example is as follows [17]:

Le(x, u) = 1
tN

∫ tN

0

k0e−E/RT(�)C2
A(�)d� (33)

where tN = 1 h is the time duration of the reactor operation. This
economic objective function highlights the maximization of the
average production rate over process operation for tN = 1 h (dif-
ferent, yet finite, values of tN can be chosen.). According to the
proposed LEMPC schemes, under mode one operation, auxiliary
LMPC problems are solved to obtain constraints on the amount of
reactant material (control action) which can be used by the LEMPC
control schemes. For the sake of simplicity, we  will refer to this type
of constraint as the material constraint. We  consider both nominal

and subject to bounded disturbance operations.

In terms of the Lyapunov-based controller, we use a pro-
portional controller (P controller) in the form u = − 
1x1− 
2x2
subject to input constraints and the quadratic Lyapunov function
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q. (7) with initial state (CA(0), T(0)) = (1 kmol/m3, 320 K) for one period of operation.
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Table 2
Economic closed-loop performance comparison based on the economic cost of Eq. (34) and the initial states in Fig. 6.

LEMPC LMPC LEMPC LMPC LEMPC LMPC

1 10.43 9.53 11 11.31 10.35 21 10.85 9.94
2 11.35  10.37 12 10.60 9.67 22 10.55 9.57
3 11.12  10.17 13 10.57 9.67 23 10.46 9.56
4  10.53 9.58 14 10.99 10.05 24 11.61 10.61
5  10.94 10 15 10.59 9.64 25 10.47 9.55
6  10.36 9.44 16 10.64 9.68 26 11.53 10.54
7  11.55 10.59 17 11.50 10.53 27 10.52 9.56
8 10.70  9.73 18 10.79 9.81 28 11.06 10.11
9 11.09  10.14 19 10.68 9.77 29 11.48 10.49

.61 9.71 30 11.36 10.40
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Fig. 4. ˝� and state trajectories of the process under the LEMPC design of Eq. (13)
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(x) = xTPx where 
1 = 1.6, 
2 = 0.01, P = diag([110.11 0.12]) and
 = 430. It should be emphasized that ˝� has been estimated
hrough evaluation of V̇ when we apply the proportional controller.
pecifically, using the P controller as the Lyapunov-based con-
roller, we apply it to the nonlinear process model as a manipulated
nput, and then we evaluate the time derivative of the Lyapunov
unction V̇ for every point in the physically meaningful range for
A and T. Then, within this range, we find the largest level set of the
yapunov function while V̇ < 0. We  assume that the full system
tate x = [x1 x2]T is measured and sent to the LEMPC at synchronous
ime instants tk = k�,  k = 0, 1, . . .,  with � = 0.01 h = 36 s.

.1. Nominal operation

An LMPC optimization problem which is only solved at sampling
ime t0 = 0 is formulated with prediction horizon N = 100 (tN = 1 h)
nd weighting matrix Q = diag([1 0.01]) and R = 1. The optimization
roblems were solved using the open source interior point opti-
izer Ipopt [18]. Figs. 2 and 3 display the closed-loop state and
anipulated input profiles for the LMPC of Eq. (7) which leads to

teady-state operation. The LMPC scheme steers the closed-loop
ystem state to the steady-state. However, this steady-state oper-
tion may  not be optimal from the standpoint of the cost of Eq.
33). It should be emphasized that this LMPC formulation is only

valuated at time t0.

Considering the material constraint which needs to be satis-
ed through each period of process operation, a decreasing LEMPC
orizon sequence N0, . . .,  N99 where Ni = 100 − i and i = 0, . . .,  99 is
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ig. 5. State and manipulated input trajectories of the process under the LEMPC desig
peration.
with initial state (CA(0), T(0)) = (1 kmol/m3, 320 K) for one period of operation. The
symbols ◦ and × denote the initial (t = 0 h) and final (t = 1 h) state of these closed-loop
system trajectories, respectively.
utilized at the different sampling times. Figs. 4 and 5 represent the
closed-loop state and the manipulated input for the LEMPC of Eq.
(13) which dictates a time-varying operation to achieve optimal
economic closed-loop performance. It should be mentioned that
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Fig. 7. ˝� and state trajectories of the process under the LEMPC design of
Eq.  (13) (without enforcing the constraint of Eq. (13f)) with initial state (CA(0),
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Fig. 6. 30 different initial states for evaluation of LEMPC and LMPC schemes.

 = CA0− CAs. So, negative u means that CA0 is less than CA0s but it is
lways greater than zero. Since there is a limited amount of reac-
ant material due to the need for consistency between LMPC and
EMPC (note that in this example the control action u is not penal-
zed in the economic cost), LEMPC should find its solution in an
ptimal fashion to meet this constraint as well as maximizing the
conomic cost function.

Regarding the implementation of the LMPC of Eq. (7), we
ntegrate the proces model using Euler’s method based on the
yapunov-based (proportional) controller as well as the LMPC
omputed control input, separately. To implement the constraint of
q. (7e), we first evaluate the Lyapunov function at sampling time tj
here j = k, . . .,  k + N − 1 and we consider the evolution of the system

ver only one integration step when we apply the Lyapunov-based
ontroller and the control input computed by the LMPC for comput-
ng the gradient of the Lyapunov function; this process is repeated
rom j = k, . . .,  k + N − 1. For the implementation of the constraint of
q. (8e), this constraint should be enforced ∀t ∈ [tk, tk+N); however,

or small integration step and sampling time, and to keep the com-
utational burden manageable, we first implement this constraint
t sampling times tj where j = k, . . .,  k + N − 1 and then we check that
or the computed control input trajectory this constraint is satisfied
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ig. 8. State and manipulated input trajectories of the process under the LEMPC design 

(0))  = (1 kmol/m3, 320 K) for one period of operation.
T(0)) = (1 kmol/m , 320 K) for one period of operation. The symbols ◦ and × denote
the initial (t = 0 h) and final (t = 1 h) state of these closed-loop system trajectories,
respectively.

for all times, i.e., ∀t ∈ [tk, tk+N); in particular, this constraint is sat-
isfied for all times, for all the closed-loop simulation reported in
this work. With respect to the satisfaction of the assumptions in
Section 2.3 in the context of the process example model, we  need
to point out that the process model f(x) vector - right hand side
of the differential equations of the process model - is continuous
differentiable and thus the assumptions on f (locally Lipschitz) as
well as the bounds of Eqs. (3) and (4) hold for appropriate values of
the parameters.

Table 2 shows the evaluation of LEMPC and LMPC from an eco-
nomic cost function point of view for 30 different initial states
within ˝� as illustrated in Fig. 6. To carry out this comparison,
we have computed the total cost of each operating scenario based
on an index of the following form:
J = 1
t100

100∑
i=0

[k0e−
E

RT(ti) C2
A(ti)] (34)
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Fig. 9. ˝� and state trajectories of the process under the LEMPC design of Eq. (26)
with initial state (CA(0), T(0)) = (1 kmol/m3, 320 K) for one period of operation subject
to  bounded process disturbance. The symbols ◦ and × denote the initial (t = 0 h) and
final (t = 1 h) state of these closed-loop system trajectories, respectively.

F
o

M. Heidarinejad et al. / Journal o

here t0 = 0 h and t100 = 1 h. It has been confirmed by these sets of
imulations that the LEMPC through time-varying process opera-
ion improves the economic closed-loop performance by about 10%
n average against steady-state operation by LMPC.

Furthermore, we performed a simulation (Figs. 7 and 8) which
eals with economic MPC  without enforcing the constraint of Eq.
13f) which indicates that in the absence of the constraint of Eq.
13f), the LEMPC significantly optimizes the economic cost function
urther (15.26 vs. 10.53) compared to the case where the constraint
f Eq. (13f) is used, at the cost of using more reactant material com-
ared to LMPC in an average sense (2.26 vs. 0.08), for the same

nitial condition and operating period. Also, we  performed another
imulation which deals with economic MPC  with enforcing the con-
traint of Eq. (13f) as an inequality (i.e., the LEMPC can use the same
r less control action than the LMPC) and we found, as expected,
hat the LEMPC obtains the same control input trajectory solution
nd cost compared to the case that we enforce this constraint as an
quality one.

.2. Operation subject to bounded process disturbances

Considering the material constraint which needs to be satisfied
hrough each period of process operation, a decreasing finite pre-
iction horizon sequence N0, . . .,  N99 where Ni = 100 − i and i = 0, . . .,
9 is utilized at different sampling times. At each sampling time

k, after solving an auxiliary LMPC problem with prediction hori-
on Nk, the LEMPC with prediction horizon Nk takes into account
he control action and cost constraints and adjusts its finite pre-
iction horizon to predict the future system evolution up to time

N = 1 hr to maximize the cost of Eq. (34). Since the LEMPC is eval-
ated at discrete-time instants during the closed-loop simulation,
he material constraint is enforced as follows:
k−1∑
i=0

uLEMPC (ti) =
Nk−1∑
i=0

uLMPC (ti) (35)

he above equation indicates that the same amount of reactant
aterial at each sampling time is used to solve both the LMPC and
he LEMPC optimization problems. For the purpose of simulations,
e set �e = 400. Also, bounded process disturbances have been

dded to the right hand side of the dynamic model of Eq. (32) which
ave been sampled from a gaussian distribution. The absolute
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ig. 10. State and manipulated input trajectories of the process under the LEMPC desig
peration subject to bounded process disturbance.
values of process disturbances are bounded by 2 and 50 for the
first and the second equation, respectively. First, the LMPC for-
mulation of Eq. (7) at sampling time tk for the chemical process
example is first solved. Having the solution of the LMPC at samp-
ling time tk, the LEMPC of Eq. (26) is then solved. Figs. 9 and 10
display the closed-loop system state and the manipulated input
with initial state (CA(0), T(0)) = (1 kmol/m3, 320 K) for one period of
operation subject to bounded process disturbances. Through time-
varying operation, LEMPC achieves 15.12 in economic cost function
of Eq. (34) while the LMPC yields 13.91. Furthermore, we evaluated
LEMPC and LMPC economic closed-loop performance for 10 dif-
ferent process disturbance realizations and we found that there is
between 8 to 9 percent improvement when LEMPC is applied over

LMPC, indicating the robustness of the obtained economic benefits
for different disturbance realizations.
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n of Eq. (26) with initial state (CA(0), T(0)) = (1 kmol/m3, 320 K) for one period of
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. Conclusions

This work focused on the design of LEMPC algorithms for a
lass of nonlinear systems which are capable of optimizing closed-
oop performance with respect to a general objective function
hat directly addresses economic considerations. Under appropri-
te stabilizability assumptions, the proposed LEMPC designs use a
hrinking horizon with respect to a fixed-time interval and very
ften dictate time-varying operation to optimize an economic
typically non-quadratic) cost function in contrast to conven-
ional LMPC designs which typically include a quadratic objective
unction and regulate a process at a steady-state. The proposed
EMPC algorithms took advantage of the solution of auxiliary LMPC
roblems at different sampling times to incorporate appropriate
conomic cost and control action-based constraints in the LEMPC
ormulations and ensure improved performance, measured by the
esired economic cost, with respect to conventional LMPC. Using

 chemical process example, the LEMPC algorithms were demon-
trated to improve average economic performance, both in the
ominal case and with disturbances present.
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