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a b s t r a c t

In this work, we focus on a class of nonlinear systems and design an estimator-based economic model
predictive control (MPC) system which is capable of optimizing closed-loop performance with respect to
general economic considerations taken into account in the construction of the cost function.Workingwith
the class of full-state feedback linearizable nonlinear systems, we use a high-gain observer to estimate
the nonlinear system state using output measurements and a Lyapunov-based approach to design an
economic MPC system that uses the observer state estimates. We prove, using singular perturbation
arguments, that the closed-loop system is practically stable provided the observer gain is sufficiently large.
We use a chemical process example to demonstrate the ability of the state-estimation-based economic
MPC to achieve process time-varying operation that leads to a superior cost performancemetric compared
to steady-state operation using the same amount of reactant material.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The development of optimal operation and control policies for
chemical process systems aiming at optimizing process economics
has always been an important research subject with major
practical implications. Traditionally, economic considerations are
addressed via a two-layer approach in which the upper layer
carries steady-state process optimization to obtain economically
optimal process operating points (steady states) while the lower
layer utilizes appropriate feedback control systems to steer the
process state to an economically optimal steady state. Model
predictive control (MPC) is widely used in the lower layer
to obtain optimal manipulated input values by minimizing a
(typically) quadratic cost function which usually penalizes the
deviation of the system state and manipulated inputs from
their economically optimal steady-state values subject to input
and state constraints [1,2]; however, this two-layer approach
usually limits process operation around a steady state. The
economic model predictive control (EMPC) framework deals with
a reformulation of the conventional MPC quadratic cost function
in which an economic (not necessarily quadratic) cost function is
used directly as the cost in MPC, and thus, it may, in general, lead
to time-varying process operation policies (instead of steady-state
operation), which directly optimize process economics.

With respect to recent results on economic MPC, efforts
have focused on combination of steady-state optimization and

∗ Corresponding author at: Department of Electrical Engineering, University of
California, Los Angeles, CA 90095-1592, USA.

E-mail address: pdc@seas.ucla.edu (P.D. Christofides).

0167-6911/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysconle.2012.06.007
linear MPC [3], stability of economic MPC of nonlinear systems
through employing a terminal constraint which requires that
the closed-loop system state settles to a steady state at the
end of the prediction horizon [4] and economic MPC of cyclic
processes (including closed-loop stability analysis using a suitable
terminal constraint) [5]. In a previous work [6], we presented
a two-mode Lyapunov-based economic MPC (LEMPC) design for
nonlinear systems which is also capable of handling asynchronous
and delayed measurements and extended it in the context
of distributed MPC [7]. Currently, all economic MPC schemes
including the ones above have been developed under the
assumption of state feedback. State estimation in certain classes
of nonlinear systems can be carried out within the framework
of high-gain observers (e.g., [8,9]), however, at this stage these
estimation techniques have not been used in conjunction with
economic MPC schemes.

Motivated by this, in this work, we focus on a class of
nonlinear systems and design an estimator-based EMPC system.
Workingwith the class of full-state feedback linearizable nonlinear
systems, we use a high-gain observer to estimate the nonlinear
system state using output measurements and a Lyapunov-based
approach to design an EMPC system that uses the observer state
estimates. We prove, using singular perturbation arguments, that
the closed-loop system is practically stable provided the observer
gain is sufficiently large. We use a chemical process example to
demonstrate the ability of the state-estimation based EMPC to
achieve process time-varying operation that leads to a superior
cost performance metric compared to steady-state operation. In
the example, the high-gain observer is used to obtain estimates
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of the reactant concentration from temperature measurements; a
meaningful case in process control practice.

2. Preliminaries

2.1. Notation

The notation |·| is used to denote the Euclidean normof a vector.
A continuous functionα : [0, a)→ [0,∞) is said to belong to class
K if it is strictly increasing and satisfies α(0) = 0. A continuous
function β : [0, a) × [0,∞) → [0,∞) is said to belong to class
KL if, for each fixed s, themapping β(r, s) belongs to classK , and
for each fixed r , the mapping β(r, s) is decreasing with respect to
s and β(r, s)→ 0 as s→∞. The symbol Ωr is used to denote the
set Ωr := {x ∈ Rnx : V (x) ≤ r} where V is a sufficiently smooth,
positive definite scalar function and r > 0, and the operator ‘/’
denotes set subtraction, that is, A/B := {x ∈ Rnx : x ∈ A, x ∉ B}.
The notation Lkf h(·) denotes the standard kth order Lie derivative
of a scalar function h(·) with respect to the vector function f (·).
The notation LgLf h(·) denotes the mixed Lie derivative of a scalar
function h(·), with respect to vector functions f (·) and g(·). The
symbol diag(v) denotes a matrix whose diagonal elements are the
elements of vector v and all the other elements are zeros. sat(·)
denotes the standard saturation function. In and 0n are the identity
matrix and a vector of zeros of dimension n, respectively. Also, the
ball Bδ with radius δ > 0 is defined as Bδ = {x ∈ Rnx : |x| ≤ δ}.

2.2. Class of nonlinear systems

We consider single-input single-output nonlinear systems
described by the following state-space model:

ẋ = f (x)+ g(x)u
y = h(x)

(1)

where x ∈ Rnx denotes the vector of state variables of the system,
x(t0) = x(0) = x0, u ∈ R is the manipulated input and y ∈ R is
the measured output. The manipulated input is restricted to be in
a nonempty convex set U ⊆ R, which is defined as U := {u ∈ R :
|u| ≤ umax

} where umax is the magnitude of the input constraint.
We assume that f , g and h are sufficiently smooth functions and
that the origin is an equilibrium point of the unforced nominal
system (i.e., system of Eq. (1) with u(t) ≡ 0) which implies that
f (0) = 0.Without loss of generality, in thisworkwe focus on single
input, single output systems; however, the proposed approach can
be extended tomulti-inputmulti-output systems in a conceptually
straightforwardmanner.We assume that the outputmeasurement
y of the system is continuously available at all times. We also
assume that the system in Eq. (1) is full-state feedback linearizable.
Thus, the relative degree of the output with respect to the input is
n. Assumption 1 states this requirement.

Assumption 1. There exists a set of coordinates

z =


z1
z2
...
zn

 = T (x) =


h(x)
Lf h(x)

...

Ln−1f h(x)

 (2)

such that the system of Eq. (1) can be written as:

ż1 = z2
...

żn−1 = zn
żn = Lnf h(T

−1(z))+ LgLn−1f h(T−1(z))u
y = z1
where LgLn−1f h(x) ≠ 0 for all x ∈ Rnx .
Using Assumption 1, the system of Eq. (1) can be rewritten in
the following compact form:

ż = Az + B[Lnf h(T
−1(z))+ LgLn−1f h(T−1(z))u]

y = Cz

where

A =

0n−1 In−1
0 0T

n−1


, B =


0n−1
1


, C =


1

0n−1

T

.

Remark 1. We note that Assumption 1 imposes certain practical
restrictions on the applicability of the method, however, this
should be balanced with the nature of the results achieved by the
output feedback controller (please see Theorem 1) in the sense
that for a sufficiently large observer gain, the closed-loop system
under the output feedback controller approaches the closed-loop
stability region and performance of the state feedback controller
(essentially a nonlinear separation-principle that is achieved
because of Assumption 1 and the use of a high-gain observer).
This is an assumption imposed in all previous works that use high-
gain observers for state estimation, starting from the early work of
Khalil and co-workers [10]. With respect to practical restrictions,
our example demonstrates that the method is applicable to a
class of chemical reactor models. We note that the requirement
of full state linearizability can be relaxed by allowing for inverse
dynamics (the casewhere the relative degree, r , is smaller than the
system dimension n; i.e., input/output linearizable systems) at the
expense of having an additional observer to estimate the state of
the inverse dynamics; please see [11] for a detailed development
of this case.

2.3. Stabilizability assumption

We assume that there exists a state feedback controller u =
k(x), which renders the origin of the closed-loop system asymp-
totically stable while satisfying the input constraints for all the
states x inside a given stability region. Using converse Lyapunov
theorems [12,13], this assumption implies that there exist class
K functions αi(·), i = 1, 2, 3, 4 and a continuously differentiable
Lyapunov function V (x) for the closed-loop system, that satisfy the
following inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x
(f (x)+ g(x)k(x)) ≤ −α3(|x|)∂V (x)

∂x

 ≤ α4(|x|)

k(x) ∈ U

(3)

for all x ∈ D ⊆ Rnx where D is an open neighborhood of the ori-
gin. We denote the region Ωρ ⊆ D as the stability region of the
closed-loop system under the controller k(x). Using the smooth-
ness assumed for the f and g , and taking into account that the ma-
nipulated input u is bounded, there exists a positive constant M
such that

|f (x)+ g(x)u| ≤ M (4)

for all x ∈ Ωρ and u ∈ U . In addition, by the continuous differen-
tiable property of the Lyapunov function V (x) and the smooth-
ness of f and g , there exist positive constants Lx, Lu, Cx, Cg ′ and Cg
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such that∂V∂x f (x)−
∂V
∂x

f (x′)
 ≤ Lx|x− x′|∂V∂x g(x)−

∂V
∂x

g(x′)
 ≤ Lu|x− x′|

|f (x)− f (x′)| ≤ Cx|x− x′|

|g(x)− g(x′)| ≤ Cg ′ |x− x′|∂V∂x g(x)
 ≤ Cg

(5)

for all x, x′ ∈ Ωρ and u ∈ U .

Remark 2. Note that in the present work, we use the level
set Ωρ of the Lyapunov function V (x) to estimate the stability
region (i.e., domain of attraction) of the closed-loop system under
the controller k(x). Specifically, an estimate of the domain of
attraction of the closed-loop system is computed as follows: first, a
controller (e.g., k(x)) is designed that makes the time-derivative of
a Lyapunov function, V (x), along the closed-loop system trajectory
negative definite in an open neighborhood around the equilibrium
point; then, an estimate of the setwhere V̇ is negative is computed,
and finally, a level set (ideally the largest) of V (denoted by Ωρ

in the present work) embedded in the set where V̇ is negative, is
computed; see Section 5 for an application of this approach.

2.4. State estimation via high gain observer

The state-estimation-based EMPC takes advantage of a high-
gain observer [10,14], which obtains estimates of the output
derivatives up to order n−1 and consequently, provides estimates
of the transformed system state z, to obtain the estimated
state of the system x̂ through the inverse transformation T−1(·).
Proposition 1 defines the high-gain observer equations and
establishes precise conditions under which the combination of
the high-gain observer and of the controller k(x) together with
appropriate saturation functions to eliminate wrong estimates
enforce asymptotic stability of the origin in the closed-loop system
for sufficiently large observer gain. The proof of the proposition
follows from the results in [11,9].

Proposition 1. Consider the nonlinear system of Eq. (1) for which As-
sumption 1 holds. Also, assume that there exists a k(x) for which
Eq. (3) holds and it enforces local exponential stability of the origin in
the closed-loop system. Consider the nonlinear system of Eq. (1) under
the output feedback controller

u = k(x̂) (6)

where

x̂ = T−1(sat(ẑ)) (7)

and

˙̂z = Aẑ + L(y− Cẑ) (8)

with

L =
a1

ϵ

a2
ϵ2
· · ·

an
ϵn

T
,

and the parameters ai are chosen such that the roots of

sn + a1sn−1 + · · · + an−1s+ an = 0 (9)

are in the open left-half of the complex plane. Then given δ, there exists
ϵ∗ such that if ϵ ∈ (0, ϵ∗], |ẑ(0)| ≤ zm, x(0) ∈ Ωδ with zm being the
maximum of the vector ẑ for |ẑ| ≤ βz(δz, 0) where βz is a class KL
function and δz = max{|T (x)|, x ∈ Ωδ}; the origin of the closed-
loop system is asymptotically stable. This stability property implies
that given ϵ ∈ (0, ϵ∗] and some positive constant em > 0 there
exists a positive real constant tb > 0 such that if x(0) ∈ Ωδ and
|ẑ(0)| ≤ zm, then |x(t)− x̂(t)| ≤ em for all t ≥ tb.

Remark 3. Note that in Proposition 1, the saturation function,
sat(·), is used to eliminate the peaking phenomenon associated
with the high-gain observer, see for example [10]. Note also that
it is considered that the estimated state x̂ has converged to the
actual state x, when the estimation error |x − x̂| is less than or
equal to a given bound em. The time needed to converge, is given
by tb which is proportional to ϵ. During this transient, the value
of the Lyapunov function V (x) may increase. Finally, we note that
for nonlinear MPC designs, computational complexity of the state
estimation scheme is very critical. A high-gain observer, as adopted
in this work, can be solved very fast and it could be more suitable
in the context of output feedback control. Other state observers
(e.g., moving horizon estimation) may also be used to estimate the
system state but the closed-loop stability for this case needs to be
studied carefully.

3. State-estimation-based economic MPC

In this section, we consider the design of an estimation-based
Lyapunov-based EMPC (LEMPC) for nonlinear systems.We assume
that the output measurements are continuously available. Also,
LEMPC is evaluated at synchronous time instants {tk≥0} with tk =
t0 + k∆, k = 0, 1, . . . where t0 = 0 is the first time that LEMPC is
evaluated while the high gain observer has converged and ∆ is the
LEMPC sampling time.

3.1. Implementation strategy

The high gain observer of Eq. (8) receives outputmeasurements
(i.e., y) and provides estimated system states (i.e., x̂) continuously.
At each sampling time tk, the LEMPC obtains the estimated system
state x̂(tk) from the observer. Based on x̂(tk), the LEMPC takes
advantage of the nominal system model to predict the future
evolution of the system over a finite prediction horizon while
maximizing a cost function that accounts for specific economic
considerations.

The two-mode operation architecture in [6] is adopted in the
design of the LEMPC. Specifically, we assume that from time t0 up
to a specific time t ′ where without loss of generality t ′ is assumed
to be a multiple of LEMPC sampling time, the LEMPC operates in
the first operation mode to maximize the economic cost function
while maintaining the closed-loop system state in the stability
region Ωρ . In this operation mode, in order to account for the
high gain observer effect, we consider another region Ωρe with
ρe < ρ. If the estimated current state is in the region Ωρe , the
LEMPC maximizes the cost function within the region Ωρe ; if the
estimated current state is in the region Ωρ/Ωρe , the LEMPC first
drives the system state to the region Ωρe and then maximizes the
cost function within Ωρe .

After time t ′, the LEMPC operates in the second operationmode
and calculates the inputs in a way that the state of the closed-
loop system is driven to a neighborhood of the desired steady state
through the knowledge of the Lyapunov-based controller k(x).

The above described implementation strategy of the proposed
LEMPC can be summarized as follows:

1. Based on the output measurements y(t), the high gain observer
estimates continuously the system state x̂(t). The LEMPC gets a
sample of the estimated system state at tk from the observer.
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2. If tk < t ′, go to Step 3. Else, go to Step 4.
3. If x̂(tk) ∈ Ωρe , go to Step 3.1. Else, go to Step 3.2.

3.1. The controller maximizes the economic cost function
within Ωρe . Go to Step 5.

3.2. The controller drives the system state to the regionΩρe and
thenmaximizes the economic cost functionwithinΩρe . Go
to Step 5.

4. The controller drives the system state to a small neighborhood
of the origin.

5. Go to Step 1 (k←− k+ 1).

Remark 4. The two-mode operation in the design and implemen-
tation of the proposed output feedback LEMPC is adopted in or-
der to reconcile two objectives: (1) time-varying operation (off
steady-state operation) of the process that optimizes a given eco-
nomic cost function, ensuring boundedness for the closed-loop
system state within a well-defined stability region (mode 1), and
(2) eventual convergence of the closed-loop system state to an eco-
nomically optimal steady-state (mode 2). We note that it is not
necessary to adopt a two-mode operation strategy and it is pos-
sible to operate the process under mode 1 for arbitrarily large pe-
riod of time (i.e., t ′ can be made arbitrarily large). The operation in
mode 2, where the state of the closed-loop system state converges
eventually to a steady state (potentially economically optimal) is
very often dictated by practical considerationswhich require time-
invariant operation at steady state to minimize wear and tear on
the control actuators. Possible reasons for picking t ′ (i.e., duration
of operation in mode 1) in practice may include acceptable time to
operate the process in time-varying fashion given actuator specifi-
cations and economic considerations.

3.2. LEMPC formulation

The LEMPC is evaluated to obtain the future input trajectories
based on estimated state x̂(tk) provided by the high gain observer.
Specifically, the optimization problem of the proposed LEMPC is as
follows:

max
u∈S(∆)

 tk+N

tk
L(x̃(τ ), u(τ ))dτ (10a)

s.t. ˙̃x(τ ) = f (x̃(τ ))+ g(x̃(τ ))u(τ ) (10b)
u(τ ) ∈ U, τ ∈ [tk, tk+N) (10c)

x̃(tk) = x̂(tk) (10d)
V (x̃(t)) ≤ ρe, ∀t ∈ [tk, tk+N), if tk ≤ t ′ and

V (x̂(tk)) ≤ ρe (10e)
LgV (x̂(tk))u(0) ≤ LgV (x̂(tk))k(x̂(tk)), if tk > t ′ or

ρe < V (x̂(tk)) ≤ ρ (10f)
where x̃ is the predicted trajectory of the system with control
input calculated by this LEMPC and S(∆) is the family of piecewise
continuous functions with period ∆ which allows us to obtain an
optimization problem to be solved at each sampling time with
a finite number of decision variables. The constraint of Eq. (10b)
is the system model used to predict the future evolution of the
system subject to the input constraint of Eq. (10c). The constraint
of Eq. (10e) is associatedwith the operationmode 1which restricts
the predicted system state to be in the setΩρe while the constraint
of Eq. (10f) is associated with the operation mode 2 and the
operation mode 1 when the estimated system state is out of the
predefined set Ωρe . This constraint makes sure that the amount
of reduction of the Lyapunov function value when the first step of
LEMPC input is applied is at least at the level achieved by applying
k(x). The optimal solution to this optimization problem is denoted
by u∗(t|tk), which is defined for t ∈ [tk, tk+N). The manipulated
input of the LEMPC of Eq. (10) is defined as follows:

u(t) = u∗(t|tk), ∀t ∈ [tk, tk+1). (11)
4. Closed-loop stability analysis

To state our main closed-loop stability result, we need the
following proposition.

Proposition 2 (Cf. [6]). Consider the system of Eq. (1) in closed loop
under the LEMPC of Eq. (10) with state feedback (i.e., x̃(tk) = x(tk))
based on a controller k(·) that satisfies the conditions of Eq. (3). Let
ϵw > 0, ∆ > 0 and ρ > ρs > 0 satisfy the following constraint:

− α3(α
−1
2 (ρs))+ LxM∆ ≤ −ϵw/∆. (12)

If x(0) ∈ Ωρ , then x(t) ∈ Ωρ,∀t ≥ 0. Furthermore, there exists a
class KL function β and a class K function γ such that

|x(t)| ≤ β(|x(t∗)|, t − t∗)+ γ (ρ∗) (13)

with ρ∗ = max{V (x(t + ∆)) : V (x(t)) ≤ ρs}, ∀x(t∗) ∈ Bδ ⊂ Ωρ

and ∀t ≥ t∗ > t ′ where t∗ is chosen such that x(t∗) ∈ Bδ .

Theorem 1 provides sufficient conditions under which the
state-estimation-based LEMPC of Eq. (10) with the high-gain
observer of Eq. (8) guarantees that the state of the closed-loop
system of Eq. (1) is always bounded and is ultimately bounded in
a small region containing the origin. To state Theorem 1, we need
the following definitions:

ei =
1

ϵn−i
(y(i−1)

− ẑi), i = 1, . . . , n, (14)

e = [e1 e2 . . . en]T (15)

and

A∗ =


−a1 1 0 · · · 0 0

...
...

...
. . .

...
...

−an−1 0 0 · · · 0 1
−an 0 0 · · · 0 0

 , b =


0
...
0
1

 (16)

where y(i−1) is the (i− 1)th derivative of the output measurement
y and ẑi is the ith component of ẑ.

Theorem 1. Consider the system of Eq. (1) in closed-loop with u
computed by the state-estimation-based LEMPC of Eqs. (7), (8) and
(10) based on a feedback controller k(·) that satisfies the conditions
of Eq. (3). Let Assumption 1, Eqs. (12) and (14)–(16) hold and choose
the parameters ai (i = 1, . . . , n) such that the roots of Eq. (9) are
in the open left-half of the complex plane. Then there exist a class
KL function β , a class K function γ , a pair of positive real numbers
(δx, dx), 0 < ρe < ρ, ϵ∗ > 0 and ∆∗ > 0 such that if max{|x(0)|,
|e(0)|} ≤ δx, ϵ ∈ (0, ϵ∗], ∆ ∈ (0, ∆∗],

− α3(α
−1
1 (ρs))+ (M∆+ em)(Lx + Luumax) < 0 (17)

and

ρe ≤ ρ − α4(α
−1
1 (ρ))M max{tb(ϵ), ∆} (18)

with tb defined in Proposition 1, then x(t) ∈ Ωρ∀t ≥ 0. Furthermore,
∀t ≥ t∗ > t ′, the following bound holds:

|x(t)| ≤ β(|x(t∗)|, t − t∗)+ γ (ρ∗)+ dx. (19)

Proof. When u = u∗ is obtained from the state-estimation-based
LEMPC of Eqs. (7), (8) and (10), the closed-loop system takes the
following singularly perturbed form:

ẋ = f (x)+ g(x)u∗(x̂)

ϵė = A∗e+ ϵbLnf h(T
−1(z))+ ϵbLgLn−1f h(T−1(z))u∗(x̂).

(20)
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First, we compute the reduced-order slow and fast closed-loop
subsystems related to Eq. (20) and prove the closed-loop stability
of the slow and fast subsystems.

Setting ϵ = 0 in Eq. (20), we obtain the corresponding slow
subsystem as follows:

ẋ = f (x)+ g(x)u∗(x̂) (21a)

A∗e = 0. (21b)

Taking into account the fact that A∗ is non-singular and e =
[0 0 . . . 0]T is the unique solution of Eq. (21b), we can obtain ẑi =
y(i−1), i = 1, . . . , n and x(t) = x̂(t). This means that the closed-
loop slow subsystem is reduced to the one studied in Proposition 2
under state feedback. According to Proposition 2, if x(0) ∈ Bδ ⊂

Ωρ , then x(t) ∈ Ωρ , ∀t ≥ 0 and ∀t ≥ t∗ > t ′, the following bound
holds:

|x(t)| ≤ β(|x(t∗)|, t − t∗)+ γ (ρ∗) (22)

where ρ∗ and t∗ have been defined in Proposition 2.
Introducing the fast time scale τ̄ = t

ϵ
and setting ϵ = 0, the

closed-loop fast subsystem can be represented as follows:

de
dτ̄
= A∗e. (23)

Since A∗ is Hurwitz, the closed-loop fast subsystem is also stable.
Moreover, there exist ke ≥ 1 and ae > 0 such that:

|e(τ̄ )| ≤ ke|e(0)|e−ae τ̄ , ∀τ̄ ≥ 0. (24)

Next, we consider t ∈ (0,max{∆, tb}] and t ≥ max{∆, tb} sep-
arately and prove that if the conditions stated in Theorem 1 are
satisfied, the boundedness of the state is ensured. Note that tb de-
creases as ϵ decreases.

When x(0) ∈ Bδx ⊂ Ωρe ⊂ Ωρ , and δx < δ, considering the
closed-loop system state trajectory:

ẋ(t) = f (x(t))+ g(x(t))u∗(x̂(0)), ∀t ∈ (0,max{∆, tb}]

and using Eqs. (4) and (3), we can obtain that for all t ∈ (0,max
{∆, tb}]:

V (x(t)) = V (x(0))+
 t

0
V̇ (x(τ ))dτ

= V (x(0))+
 t

0

∂V (x(τ ))

∂x
ẋ(τ )dτ

≤ ρe +M max{∆, tb(ϵ)}α4(α
−1
1 (ρ)). (25)

Since tb decreases as ϵ decreases, there exist ∆1 and ϵ1 such that if
∆ ∈ (0, ∆1] and ϵ ∈ (0, ϵ1], Eq. (18) holds and thus,

V (x(t)) < ρ, ∀t ∈ (0,max{∆, tb}]. (26)

For t ≥ max{∆, tb}, we have that |x(t) − x̂(t)| ≤ em (this follows
from Proposition 1 and em decreases as ϵ decreases), and we
can write the time derivative of the Lyapunov function along the
closed-loop system state of Eq. (1) under the state-estimation-
based LEMPC of Eqs. (7), (8) and (10) for all t ∈ [tk, tk+1) (assuming
without loss of generality that tk = max{∆, tb}) as follows

V̇ (x(t)) =
∂V (x(t))

∂x
(f (x(t))+ g(x(t))u∗(x̂(tk))). (27)

Adding and subtracting the term ∂V (x̂(tk))
∂x (f (x̂(tk)) + g(x(tk))u∗

(x̂(tk))) to/from the above inequality and taking advantage of
Eqs. (3) and (10f), we can obtain

V̇ (x(t)) ≤ −α3(α
−1
1 (ρs))+

∂V (x)
∂x

(f (x(t))− f (x̂(tk))

+ u∗(x̂(tk))(g(x(t))− g(x̂(tk)))). (28)
Using the smoothness properties of V , f , g and Eq. (5), we can ob-
tain

V̇ (x(t)) ≤ −α3(α
−1
1 (ρs))+ (Lx + Luumax)|x(t)− x̂(tk)|. (29)

By taking advantage of |x(t) − x̂(tk)| ≤ |x(t) − x(tk)| + |x(tk) −
x̂(tk)| ≤ M∆ + em (using Eq. (4)) and the fact that the estimation
error is bounded by em for t ≥ max{∆, tb}, we have

V̇ (x(t)) ≤ −α3(α
−1
1 (ρs))+ (Lx + Luumax)(M∆+ em). (30)

Picking ϵ2 and∆2 such that∀ϵ ∈ (0, ϵ2] and∀∆ ∈ (0, ∆2], Eq. (17)
is satisfied, the closed-loop system state x(t) is bounded in
Ωρ,∀t ≥ max{∆, tb}. Finally, using similar arguments to the proof
of Theorem 1 in [8], we have that there exist class KL function β ,
positive real numbers (δx, dx) (note that the existence of δx < δ
such that |x(0)| ≤ δx follows from the smoothness of V (x)), and
0 < ϵ∗ < min{ϵ1, ϵ2} and 0 < ∆∗ < min{∆1, ∆2} such that if
max{|x(0)|, |e(0)|} ≤ δx, ϵ ∈ (0, ϵ∗] and ∆ ∈ (0, ∆∗], then, the
bound of Eq. (19) holds for all t ≥ t∗. �

Remark 5. It needs to be clarified that under state feedback
LEMPC, the closed-loop system state is always bounded in Ωρ

for both mode 1 and mode 2 operation; however, for mode 2
operation, after time t∗ the closed-loop system state enters the ball
Bδ , and the closed-loop system state can be bounded by Eq. (22). On
the other hand, in state-estimation-based LEMPC, the closed-loop
system state is always bounded in Ωρ , if the initial system state
belongs in Bδx ⊂ Ωρe ⊂ Ωρ .

Remark 6. In the present work, we consider that there is no
measurement noise in the process output and assume that the
full system model is available. We can consider a smaller stability
region, sayΩρ̃ , which takes into account the effect ofmeasurement
noise as well as a lower observer gain to deal better with
measurement noise. Please refer to Chapter 6 of [2] (see also [7]) for
a detailed discussion on how to determine the stability region Ωρ

in the presence of measurement noise and to the example section
for an evaluation of the closed-loop performance of the proposed
output feedback controller under measurement noise.

Remark 7. If the initial condition x(t0) (and the following x̂(tk)
estimate) is outside of the stability region Ωρ , we cannot take
advantage of the stability properties of the nonlinear controller
k(x). However, since Ωρ is an estimate of the stability region, it
is possible to achieve closed-loop stability under the proposed
LEMPC design for states outside of Ωρ . In the case where x(tk) is
outside ofΩρ , the proposed LEMPCmode 1 can bemade feasible by
removing the constraint of Eq. (10f) at the expense of losing closed-
loop stability guarantees.

Remark 8. The major motivation for taking advantage of the
nonlinear controller k(x) arises from the need for formulating an
a priori feasible economic MPC problem for a well-defined set of
initial conditions. The control action of k(x) is always a feasible
candidate for the proposed LEMPC design (even though the LEMPC
via optimization is free to choose a different control action) and
the LEMPC can take advantage of k(x) to characterize its own
corresponding stability region. In addition, the closed-loop system
state is always bounded in the invariant stability region of k(x).

5. Application to a chemical process example

Consider a well-mixed, non-isothermal continuous stirred tank
reactor (CSTR) where an irreversible, second-order, endothermic
reaction A → B takes place, where A is the reactant and B is the
desired product. The feed to the reactor consists of pure A at flow
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Table 1
Parameter values.

T0 = 300 K
V = 1.0 m3

k0 = 13.93 1
h

Cp = 0.231 kJ
kgK

σ = 1000 kg
m3

Ts = 350 K
Qs = 1.73× 105 kJ

h

F = 5 m3

h

E = 5× 103 kJ
kmol

1H = 1.15× 104 kJ
kmol

R = 8.314 kJ
kmolK

CAs = 2 kmol
m3

CA0s = 4 kmol
m3

rate F , temperature T0 and molar concentration CA0. Due to the
non-isothermal nature of the reactor, a jacket is used to provide
heat to the reactor. The dynamic equations describing the behavior
of the reactor, obtained through material and energy balances
under standard modeling assumptions, are given below:

dCA

dt
=

F
V

(CA0 − CA)− k0e
−E
RT C2

A (31a)

dT
dt
=

F
V

(T0 − T )+
−1H
σCp

k0e
−E
RT C2

A +
Qs

σCpV
(31b)

where CA denotes the concentration of the reactant A, T denotes
the temperature of the reactor, Qs denotes the steady-state rate of
heat supply to the reactor, V represents the volume of the reactor,
1H, k0, and E denote the enthalpy, pre-exponential constant and
activation energy of the reaction, respectively, and Cp and σ denote
the heat capacity and the density of the fluid in the reactor,
respectively. The values of the process parameters used in the
simulations are shown in Table 1. The process model of Eq. (31) is
numerically simulated using an explicit Euler integration method
with integration step hc = 10−3 h.

The process model has one stable steady state in the operating
range of interest. The control objective is to economically optimize
the process in a region around the stable steady state (CAs, Ts) to
maximize the average production rate of B through manipulation
of the concentration of A in the inlet to the reactor, CA0. The steady-
state CA0 value associatedwith the steady-state point is denoted by
CA0s. The process model of Eq. (31) belongs to the following class of
nonlinear systems:

ẋ(t) = f (x(t))+ g(x(t))u(t)

where xT = [x1 x2] = [CA − CAs T − Ts] is the state, u = CA0 −

CA0s is the input, f = [f1 f2]T and gi = [gi1 gi2]T (i = 1, 2) are
vector functions. The input is subject to constraint as follows: |u| ≤
3.5 kmol/m3. There is an economic measure considered in this
example as follows [15]:

L(x, u) =
1
tf

 tf

0
k0e
−

E
RT (τ ) C2

A (τ )dτ (32)

where tf is the time duration of the reactor operation; we note
that in an ideal case a CSTR system can operate indefinitely,
however, in practice the operation time is finite. In the simulations
presented below, we consider different operating time scenarios
to demonstrate that the application of the proposed economic
MPC method is not dependent on tf . In fact, the CSTR can operate
indefinitely either under mode 1 economic MPC operation (which
leads to time-varying operation) or under mode 2 economic MPC
operation which leads to steady-state operation. The economic
objective function of Eq. (32) describes the average production rate
over the entire process operation. We also consider that there is a
limitation on the amount of reactant material which can be used
over a specific period tp = 1 h; this is a standard constraint in a
practical setting where the amount of reactant material is always
finite. Specifically, u = CA0 − CA0s should satisfy the following
constraint:

1
tp

 tp

0
u(τ )dτ = 1 kmol/m3. (33)

It should be emphasized that due to the second-order dependence
of the reaction rate on the reactant concentration, the production
rate can be improved through switching between the upper and
lower bounds of themanipulated input [15], as opposed to steady-
state operation via steady in time distribution of the reactant in the
feed. In this section we will design an estimation-based LEMPC to
manipulate the CA0 subject to the material constraint. In the first
set of simulations, we assume that state feedback information is
available at synchronous time instants while in the second set of
simulations we take advantage of a high-gain observer to estimate
the reactant concentration from temperature measurements.

In terms of the Lyapunov-based controller, we use a propor-
tional controller (P controller) in the form u = −γ1x1 − γ2x2
subject to input constraints and the quadratic Lyapunov func-
tion V (x) = xTPx where γ1 = 1.6, γ2 = 0.01, P = diag([110.11,
0.12]) and ρ = 430. It should be emphasized that Ωρ has been
estimated through evaluation of V̇ when we apply the propor-
tional controller. We assume that the full system state x = [x1 x2]T
is measured and sent to the LEMPC at synchronous time instants
tk = k∆, k = 0, 1, . . . , with ∆ = 0.01 h = 36 s in the first set
of simulations while for output feedback LEMPC only tempera-
ture (x2) is available to LEMPC and a high-gain observer is utilized
to estimate the reactant concentration from temperature mea-
surements. Considering the material constraint which needs to
be satisfied through one period of process operation, a decreas-
ing LEMPC horizon sequence N0, . . . ,N99 where Ni = 100− i and
i = 0, . . . , 99 is utilized at the different sampling times. At each
sampling time tk, LEMPC with horizon Nk takes into account the
leftover amount of reactantmaterial and adjusts its horizon to pre-
dict future system state up to time tp = 1 h to maximize the aver-
age production rate. Since the LEMPC is evaluated at discrete-time
instants during the closed-loop simulation, thematerial constraint
is enforced as follows:

M−1
i=0

u(ti) =
tp
∆

(34)

where M = 100. As LEMPC proceeds at different sampling times,
this constraint is adjusted according to the optimal manipulated
input at previous sampling times. Specifically, the state feedback
LEMPC formulation for the chemical process example in question
has the following form:

max
u∈S(∆)

1
Nk∆

 tk+Nk

tk


k0e
−

E
RT (τ ) C2

A (τ )

dτ (35a)

˙̃x(t) = f (x̃(t))+ g(x̃(t))u(t) t ∈ [tk, tk+Nk ] (35b)

k+Nk−1
i=k

u(ti|tk) = ζk (35c)

x̃(tk) = x(tk) (35d)

V (x̃(t)) ≤ ρ t ∈ [tk, tk+Nk ] (35e)

u(t) ∈ U t ∈ [tk, tk+Nk ] (35f)
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Fig. 1. Ωρ and state trajectories of the process under the LEMPC design of Eq. (35)
with state feedback and initial state (CA(0), T (0)) = (1.3 kmol

m3 , 320K) for oneperiod
of operation with (solid line) and without (dash–dotted line) the constraint of Eq.
(35e). The symbols ◦ and× denote the initial (t = 0 h) and final (t = 1 h) state of
these closed-loop system trajectories, respectively.

where x(tk) is the process state measurement at sampling time
tk and the predicted system state along the LEMPC horizon is re-
stricted in the invariant set Ωρ through enforcement of the con-
straint of Eq. (35e) subject to the manipulated input constraint of
Eq. (35f). The constraint of Eq. (35c) implies that the optimal val-
ues of u along the prediction horizon should be chosen to satisfy
the material constraint where the explicit expression of ζk can be
computed based on Eq. (34) and the optimal manipulated input
values prior to sampling time tk. In other words, this constraint
indicates the amount of the remaining reactant material at each
sampling time. Thus, it ensures that the material constraint is en-
forced through one period of process operation. In terms of the
initial guess for solving the optimization problem of Eq. (35), at
the first sampling time we take advantage of the Lyapunov-based
controller while for the subsequent sampling times, a shifted ver-
sion of the optimal solution of the previous sampling time is uti-
lized. The simulations were carried out using Java programming
language in a Pentium 3.20 GHz computer and the optimization
problems were solved using the open source interior point opti-
mizer Ipopt [16]. The purpose of the following set of simulations is
to demonstrate that: (I) the proposed LEMPCdesign subject to state
and output feedback restricts the system state in an invariant set;
(II) the proposed LEMPC design maximizes the economic measure
of Eq. (35a); and (III) the proposed LEMPC design achieves a higher
objective function value compared to steady-state operation with
equal distribution in time of the reactant material. We have
also performed simulations for the case where the constraint of
Eq. (35e) is not included in the LEMPCdesign of Eq. (35). In this case,
the process state is not constrained to be in a specific invariant set.

In the first set of simulations, we take the CSTR operation time
tf = tp = 1 h. Figs. 1–3 illustrate the process state profile in state
space (temperature T versus concentration CA) considering the sta-
bility regionΩρ , the time evolution of the process state and thema-
nipulated input profile for the LEMPC formulation of Eq. (35) with
and without the state constraint of Eq. (35e), respectively. In both
cases the initial process state is (1.3 kmol

m3 , 320 K). For both cases,
thematerial constraint is satisfiedwhile in the unconstrained state
case, there is more freedom to compute the optimal input trajec-
tory to maximize the average production rate. It needs to be em-
phasized that the process state trajectory under the LEMPC design
of Eq. (35) subject to the constraint of Eq. (35e) never leaves the in-
variant level set Ωρ when this constraint is enforced. We have also
compared the time-varying operation through LEMPC of Eq. (35)
to steady-state operation where the reactant material is uniformly
distributed in the feed to the reactor over the process operation
time (1 h), from a closed-loop performance point of view. To carry
out this comparison, we have computed the total cost of each op-
erating scenario based on an index of the following form:

J =
1
tM

M
i=0


k0e
−

E
RT (ti) C2

A (ti)


where t0 = 0 h, tM = 1 h and M = 100. To be consistent in com-
parison, both of the simulations have been initialized from the
steady-state point (2 kmol

m3 , 350 K). We find that through time-
varying LEMPC operation, there is approximately 7% improvement
with respect to steady-state operation. Specifically, in the case of
LEMPC operation with ρ = 430 the cost is 13.48, in the case of
LEMPC operationwith ρ = ∞ (LEMPC of Eq. (35) without the state
constraint of Eq. (35e)) the cost is 13.55 and in the case of steady-
state operation the cost is 12.66.
Fig. 2. State trajectories of the process under the LEMPC design of Eq. (35) with state feedback and initial state (CA(0), T (0)) = (1.3 kmol
m3 , 320 K) for one period of operation

with (solid line) and without (dash–dotted line) the constraint of Eq. (35e).
Fig. 3. Manipulated input trajectory under the LEMPC design of Eq. (35) with state feedback and initial state (CA(0), T (0)) = (1.3 kmol
m3 , 320 K) for one period of operation

with (solid line) and without (dash–dotted line) the constraint of Eq. (35e).



M. Heidarinejad et al. / Systems & Control Letters 61 (2012) 926–935 933
Fig. 4. Ωρ and state trajectory of the process under state-estimation-based LEMPC
and initial state (CA(0), T (0)) = (1.3 kmol

m3 , 320 K) for one period of operation
subject to the constraint of Eq. (35e). The symbols ◦ and × denote the initial
(t = 0 h) and final (t = 1 h) state of this closed-loop system trajectory, respectively.
We have also performed closed-loop simulation with the state-
estimation-based LEMPC (again, tf = tp = 1 h). For this set of
simulation the high-gain observer parameters are ϵ = 0.01, a1 =
a2 = 1, ρe = 400 and zm = 1685; the high-gain observer is of
the form of Eq. (8) with n = 2. In this case, the LEMPC formulation
at each sampling time is initialized by the estimated system state
x̂(tk)while the output (temperature)measurement is continuously
available to the high-gain observer. To ensure that the actual sys-
tem state is restricted in Ωρ , we set ρe = 400. Figs. 4–6 illustrate
the process state profile in state space (temperature T versus con-
centration CA) considering the stability region Ωρ , the time evo-
lution of process states and the manipulated input profile for the
LEMPC formulation of Eq. (35) using high-gain observer and with
the state constraint of Eq. (35e), respectively. Similar to the state
feedback case, the initial process state is (1.3 kmol

m3 , 320 K). Through
LEMPC implementation, the material constraint is satisfied while
the closed-loop system state is restricted inside the stability region
Ωρ . The cost is 12.98 which is higher than the one for steady-state
operation (12.66).

Also, we performed a set of simulations to compare LEMPC
with the Lyapunov-based controller from an economic closed-loop
performance point of view for operation over two consecutive
one hour periods (i.e., tf = 2 h and tp = 1 h). To be consistent
Fig. 5. State trajectories of the process under state-estimation-based LEMPC and initial state (CA(0), T (0)) = (1.3 kmol
m3 , 320 K) for one period of operation subject to the

constraint of Eq. (35e).
Fig. 6. Manipulated input trajectory under state-estimation-based LEMPC and initial state (CA(0), T (0)) = (1.3 kmol
m3 , 320 K) for one period of operation subject to the

constraint of Eq. (35e).
Fig. 7. Ωρ and state trajectory of the process under state-estimation-based LEMPC and initial state (CA(0), T (0)) = (1.3 kmol
m3 , 320 K) for 10 h operation in mode 1, then

10 h of operation in mode 2 and finally 10 h of operation in mode 1. The symbols ◦ and× denote the initial (t = 0 h) and final (t = 30 h) state of this closed-loop system
trajectory, respectively.



934 M. Heidarinejad et al. / Systems & Control Letters 61 (2012) 926–935
Fig. 8. Reactant concentration trajectory of the process under state-estimation-based LEMPC and initial state (CA(0), T (0)) = (1.3 kmol
m3 , 320 K) for 10 h operation in mode

1, then 10 h of operation in mode 2 and finally 10 h of operation in mode 1.
Fig. 9. Temperature trajectory of the process under state-estimation-based LEMPC and initial state (CA(0), T (0)) = (1.3 kmol
m3 , 320 K) for 10 h operation in mode 1, then

10 h of operation in mode 2 and finally 10 h of operation in mode 1.
Fig. 10. Manipulated input trajectory under state-estimation-based LEMPC and initial state (CA(0), T (0)) = (1.3 kmol
m3 , 320 K) for 10 h operation in mode 1, then 10 h of

operation in mode 2 and finally 10 h of operation in mode 1.
in this comparison in the sense that both the LEMPC and the
Lyapunov-based controller use the same, available amount of
reactant material, we start the simulation in both cases from the
same initial condition (2.44 kmol

m3 , 321.96 K), which corresponds
to the steady state of the process when the available reactant
material is uniformly distributed over eachperiod of operation. The
objective of the Lyapunov-based controller is to drive the system
state at this steady state, while the output feedback LEMPC leads to
time-varying operation that optimizes directly the economic cost.
The corresponding economic costs for this two-hour operation are
26.50 for the LEMPC and 25.61 for the Lyapunov-based controller.

Furthermore, to demonstrate long-term reactor operation (i.e.,
tf = 30 h and tp = 1 h), we operate the process in a time-varying
fashion to optimize the economic cost in mode 1 for the first 10 h,
then switch to mode 2 to drive the closed-loop state to the steady
state corresponding to u = 1 (i.e., equal distribution with time
of the reactant material) for the next 10 h, and finally operate
the process in mode 1 for the last 10 h. Figs. 7–10 display the
results for this case, where the closed-loop system successfully
alternates between the two different types (time-varying versus
steady-state) of operation.

Finally, we performed a set of simulations to evaluate the
effect of bounded measurement noise. Figs. 11–13 display the
closed-loop system state and manipulated input of the state-
estimation-based LEMPC subject to bounded output (temperature)
measurement noise whose absolute value is bounded by 1 K. As
can be seen in Figs. 11–13, the controller can tolerate the effect
of measurement noise; in this case, Ωρe was reduced to 370 to
improve the robustness margin of the controller to measurement
noise. Economic closed-loop performance in this case is 12.95.
Fig. 11. Ωρ and state trajectory of the process under state-estimation-based LEMPC
and initial state (CA(0), T (0)) = (1.3 kmol

m3 , 320 K) for one period of operation
subject to the constraint of Eq. (35e) and boundedmeasurement noise. The symbols
◦ and × denote the initial (t = 0 h) and final (t = 1 h) state of this closed-loop
system trajectory, respectively.

6. Conclusions

In this work, we designed an estimator-based EMPC for the
class of full-state feedback linearizable nonlinear systems. A high-
gain observer is used to estimate the nonlinear system state
using output measurements and a Lyapunov-based approach is
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Fig. 12. State trajectories of the process under state-estimation-based LEMPC and initial state (CA(0), T (0)) = (1.3 kmol
m3 , 320 K) for one period of operation subject to the

constraint of Eq. (35e) and bounded measurement noise.
Fig. 13. Manipulated input trajectory under state-estimation-based LEMPC and initial state (CA(0), T (0)) = (1.3 kmol
m3 , 320 K) for one period of operation subject to the

constraint of Eq. (35e) and bounded measurement noise.
adopted to design the EMPC that uses the observer state estimates.
It was proved, using singular perturbation arguments, that the
closed-loop system is practically stable provided the observer gain
is sufficiently large. A chemical process example was used to
demonstrate the ability of the state-estimation-based economic
MPC to achieve time-varying process operation that leads to
a superior cost performance metric compared to steady-state
operation using the same amount of reactant material.
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